Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nano graphene oxide (NGO) has high drug-loading capacity due to its huge surface area. However, the limited stability and the poor biocompatibility of NGO hampered its application as drug delivery carrier under physiological conditions. Thereby, a new strategy of using chemical conjugation on NGO with hydrophilic polymers was adopted but currently was too complicated, low yield and costly. In this study, doxorubicin-hyd-PEG-folic acid (DOX-hyd-PEG-FA) polymers were coated on the surface of NGO π-π stocking and the hydrophobic effect between DOX and NGO. With the PEG shell protection, the biocompatibility of NGO was significantly improved. The drug-loading capacity of nanoparticles was more than 100%. FA ligands on the nanoparticle could guide the nanoparticles actively targeting to tumour cells. The hydrazone bond between DOX and PEG was decomposed spontaneously in the weakly acidic environment, which made PEG layer dissociated from NGO. Furthermore, DOX was easily protonized at low pH conditions, which weakened the interaction between DOX and NGO. Thus, DOX could be released rapidly from the nanoparticles in tumour cells. In summary, NGO@DOX-hyd-PEG-FA is an easy-prepared nanoparticle with excellent biocompatibility, high pH-sensitivity and active tumour targeting. Therefore, it is a promising multifunctional nanocarrier effective for targeted drug delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/1061186X.2021.1887200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!