Metal halide perovskite light-emitting diodes (PeLEDs) have been regarded as alternative candidates for full-color display applications with rapid progress to surge the external quantum efficiencies (EQEs) over 20%. However, in contrast to the high efficiencies of green, red, and near-infrared PeLEDs, the performance of their blue cousins is still lagging behind, especially the pure-blue one. Obtaining blue perovskite films with negligible nonradiative recombination loss and high stability is of great importance to realize efficient and spectrally stable blue PeLEDs. In this work, through partially replacing the toxic lead ions (Pb) with ecofriendly strontium ions (Sr) to tune the emission wavelength along with using passivation strategies, all-inorganic pure-blue perovskite films with a high photoluminescence quantum yield of 60.7% were achieved, which then delivered PeLEDs with a luminance of 510 cd m and an EQE of 1.43%. The device yields a record radiance among the most efficient PeLEDs at 467 nm. In addition, the resultant PeLEDs displayed exceptional spectral stability during the electrical bias operation. Our work provides a promising avenue to develop environmentally friendly perovskite materials for efficient and spectrally stable pure-blue PeLEDs and beyond.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.0c03633 | DOI Listing |
Light Sci Appl
January 2025
Executive Management College of CHN ENERGY, No.7 Binhe Avenue, North District of Future Science City, Changping District, Beijing, 102211, China.
In 2012, Prof. Henry Snaith demonstrated the first solid-state perovskite solar cell (PSC) with an efficiency of 10.9%, igniting a surge of interest and research into perovskite materials for their potential to revolutionize the photovoltaic (PV) industry.
View Article and Find Full Text PDFNat Commun
December 2024
Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
Metal halide perovskites show promise for next-generation light-emitting diodes, particularly in the near-infrared range, where they outperform organic and quantum-dot counterparts. However, they still fall short of costly III-V semiconductor devices, which achieve external quantum efficiencies above 30% with high brightness. Among several factors, controlling grain growth and nanoscale morphology is crucial for further enhancing device performance.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Halide perovskites have emerged as promising materials for a wide variety of optoelectronic applications, including solar cells, light-emitting devices, photodetectors, and quantum information applications. In addition to their desirable optical and electronic properties, halide perovskites provide tremendous synthetic flexibility through variation of not only their chemical composition but also their structure and morphology. At the heart of their use in optoelectronic technologies is the interaction of light with electronic excitations in the form of excitons.
View Article and Find Full Text PDFLangmuir
December 2024
Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.
Due to intrinsic defects in blue-light-emitting perovskite materials, the charge carriers are prone to being trapped by the trap states. Therefore, the preparation of efficient blue-light-emitting perovskite materials remains a significant challenge. Herein, CsPb(Cl/Br) nanocrystal (NCs)@SiO structures were fabricated through hydrolyzing (3-aminopropyl)-triethoxysilane (APTS).
View Article and Find Full Text PDFACS Nano
December 2024
Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
Research on perovskite light-emitting diodes (PeLEDs) has primarily focused on modulating crystal growth to achieve smaller grain sizes and defect passivation using organic additives. However, challenges remain in controlling the intermolecular interactions between these organic additives and perovskite precursor ions for precise modulation of crystal growth. In this study, we synthesize two triphenylphosphine oxide (TPPO)-based multidentate additives: bidentate hexane-1,6-diyl-bis(oxy-4-triphenylphosphine oxide) (2-TPPO) and tetradentate pentaerythrityl-tetrakis(oxy-4-triphenylphosphine oxide) (4-TPPO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!