The development of new and efficient methodology for the construction of optically active molecules is of great interest in both synthetic organic and medicinal chemistry fields. To this end, the personal account summarizes our studies on the development of electron-deficient alkenes, allenes, and alkynes containing single activator as new dipolarophiles for Pd-catalyzed asymmetric cycloaddition reactions. These new dipolarophiles can participate in Pd-catalyzed asymmetric [3+2] and [4+2] cycloadditions through Pd-π-allyl 1,3- and 1,4-zwitterions in-situ generated by the reaction of Pd(0) catalyst with vinyl aziridines, vinyl epoxides, vinyl cyclopropanes, 4-vinyl-1,3-dioxan-2-ones, and vinyl benzoxazinanones. These [3+2] and [4+2] cycloadditions provide efficient approaches to a wide range of enantiomerically enriched five- and six-membered ring compounds containing contiguous chiral centers with high to excellent chemo-, diastereo-, and enantioselectivities. The utilities of these protocols are demonstrated by transformation of the cycloadducts into other useful chiral building blocks. DFT calculations reveal the dissimilar reactivity of different electron deficient alkenes and rationalize the mechanism and stereo-control of the reaction. A Pd-catalyzed inverse [3+2] cycloaddition is disclosed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/tcr.202000177 | DOI Listing |
Molecules
January 2025
Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland.
Numerous emerging chemotherapeutic agents incorporate -heterocyclic fragments in their structures, with the quinoline skeleton being particularly significant. Our recent works have focused on glycoconjugates of 8-hydroxyquinoline (8-HQ), which demonstrated enhanced bioavailability and solubility compared to their parent compounds, although they fell short in selectivity. In this study, our objective was to improve the selectivity of glycoconjugates by replacing the oxygen atom with nitrogen by substituting the 8-HQ moiety with 8-aminoquinoline (8-AQ).
View Article and Find Full Text PDFBiomedicines
January 2025
Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal.
The potentiator VX-770 (ivacaftor) has been approved as a monotherapy for over 95 cystic fibrosis (CF)-causing variants associated with gating/conductance defects of the CF transmembrane conductance regulator (CFTR) channel. However, despite its therapeutic success, VX-770 only partially restores CFTR activity for many of these variants, indicating they may benefit from the combination of potentiators exhibiting distinct mechanisms of action (i.e.
View Article and Find Full Text PDFJ Org Chem
January 2025
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
A cascade reaction of Pd(II)/dppben-catalyzed [3 + 2] cycloaddition of -aryl nitrones with allenoates and sequential reduction has been developed for the synthesis of functionalized benzazepines bearing three contiguous carbon stereocenters in moderate to good yields ranging from 15 to 82% and high diastereoselectivity. The obtained benzazepines could be converted into various benzazepine scaffolds, and an estrone-derived benzazepine scaffold was prepared over four steps from estrone. More importantly, chiral benzazepine bearing three contiguous carbon stereocenters could be obtained in 88% ee value with chiral auxiliary.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China.
Electron-induced effects, which are prevalent in adsorption and heterogeneous catalytic reactions, can significantly influence the state and uptake of adsorbates. Here, we demonstrate the in situ doping of electron-deficient boron into the backbone of chitosan-based porous carbon materials. Despite a reduction in specific surface area, the resulting boron-doped porous carbons (NBPCs) exhibit an enhanced CO adsorption performance, with sample NBPC-10 achieving CO adsorption capacities of 7.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad-500 046, India.
Benzothiazole and benzoxazole heterocyclic ring-containing 1,4,5-trisubstituted-1,2,3-triazoles are well known for their wide range of applications in pharmaceutical and medicinal chemistry, but their high-yielding metal-free selective synthesis has always remained challenging as no comprehensive simple protocol has been outlined to date. Owing to their structural and medicinal importance, herein, we synthesized various benzothiazole and benzoxazole heterocyclic ring-containing 1,4,5-trisubstituted-1,2,3-triazoles in high to excellent yields with chemo-/regioselectivity from the library of benzothiazole/benzoxazole-ketones and aryl/alkyl-azides through an enolate-mediated organocatalytic azide-ketone [3 + 2]-cycloaddition under ambient conditions in a few hours. The commercial availability or quick synthesis of the starting materials and catalysts, a diverse substrate scope, chemo-/regioselectivity, quick synthesis of pharmaceutically active known compounds and their analogues, and numerous medicinal applications of functionalized benzothiazole/benzoxazole-triazoles are the key attractions of this metal-free organo-click reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!