Nickel, a heavy metal found in electronic wastes and fume from electronic cigarettes, induces neuronal cell death and is associated with neurocognitive impairment. Astrocytes are the first line of defense against nickel after entering the brain; however, the effects of nickel on astrocytes remain unknown. Herein, we investigated the effect of nickel exposure on cell survival and proliferation and the underlying mechanisms in U-87 MG human astrocytoma cells and primary human astrocytes. Intracellular nickel levels were elevated in U-87 MG cells in a dose- and time-dependent manner after exposure to nickel chloride. The median toxic concentrations of nickel in astrocytoma cells and primary human astrocytes were 600.60 and >1000 µM at 48 h post-exposure, respectively. Nickel exposure triggered apoptosis in concomitant with the decreased expression of anti-apoptotic B-cell lymphoma protein (Bcl-2) and increased caspase-3/7 activity. Nickel induced reactive oxygen species formation. Additionally, nickel suppressed astrocyte proliferation in a dose- and time-dependent manner by delaying G2 to M phase transition through the upregulation of cyclin B1 and p27 protein expression. These results indicate that nickel-induced cytotoxicity of astrocytes is mediated by the activation of apoptotic pathway and disruption of cell cycle regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/mtomcs/mfaa006DOI Listing

Publication Analysis

Top Keywords

nickel
10
intracellular nickel
8
cell cycle
8
nickel exposure
8
astrocytoma cells
8
cells primary
8
primary human
8
human astrocytes
8
dose- time-dependent
8
time-dependent manner
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!