The selective alkylation of nucleic acids is important for a medicinal approach and biological study. We now report a novel selective alkylation of the parallel G-quadruplex structure using the conjugate of the macrocyclic hexaoxazole L2G2-6OTD-1M1PA and vinyl-quinazolinone-S(O)Me (6OTD-VQ-S(O)Me).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0ob02365e | DOI Listing |
Org Biomol Chem
January 2025
Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.
High-performance liquid chromatography (HPLC) plays a crucial role in purifying peptides and proteins and monitoring their reactions. Peptide hydrazides are widely employed intermediates in modern peptide/protein chemistry. However, they often exhibit peak tailing during HPLC purification and analysis.
View Article and Find Full Text PDFOrg Lett
January 2025
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
4'-Selective alkylation of nucleosides has been recognized as one of the ideal and straightforward approaches to chemically modified nucleosides, but such a transformation has been scarce and less explored. In this Letter, we combine a visible-light-mediated photoredox catalysis and hydrogen atom transfer (HAT) auxiliary to achieve β-C(sp)-H alkylation of alcohol on tetrahydrofurfuryl alcohol scaffolds and exploit it for 4'-selective alkylation of nucleosides. The reaction involves an intramolecular 1,5-HAT process and stereocontrolled Giese addition of the resultant radicals.
View Article and Find Full Text PDFAcc Chem Res
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China.
ConspectusMolecular photoelectrocatalysis, which combines the merits of photocatalysis and organic electrosynthesis, including their green attributes and capacity to offer novel reactivity and selectivity, represents an emerging field in organic chemistry that addresses the growing demands for environmental sustainability and synthetic efficiency. This synergistic approach permits access to a wider range of redox potentials, facilitates redox transformations under gentler electrode potentials, and decreases the use of external harsh redox reagents. Despite these potential advantages, this area did not receive significant attention until 2019, when we and others reported the first examples of modern molecular photoelectrocatalysis.
View Article and Find Full Text PDFThe vasodilator hydralazine (HYZ) has been used clinically for ∼ 70 years and remains on the World Health Organization's List of Essential Medicines as a therapy for preeclampsia. Despite its longstanding use and the concomitant progress toward a general understanding of vasodilation, the target and mechanism of HYZ have remained unknown. We show that HYZ selectively targets 2-aminoethanethiol dioxygenase (ADO) by chelating its metal cofactor and alkylating one of its ligands.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemistry and School of Pharmacy, China State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
Here we present a regio- and stereoselective alkylation approach for unprotected saccharides using synergistic boronic acid and photoredox catalysis. Targeting the equatorial C-H bond of the -1,2-diol motif, this method employs MeB(OH) as a catalyst. Mechanistic investigations indicate that the formation of a tetracoordinate boron species, resulting from the interaction between the cyclic boronic diol ester and a free hydroxyl group in the saccharide, is critical to this transformation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!