Sea lice are amongst the most ecologically and economically damaging parasites of farmed salmonids globally. Spill-over from aquaculture can increase parasite pressure on wild fish populations, but quantifying this effect is challenging due to the relative paucity of data available on 'natural' salmonid louse burdens in the absence of aquaculture, particularly for Atlantic salmon Salmo salar. Here, wild Atlantic salmon and sea trout S. trutta were screened at the tidal limit of the River Tamar (UK) for the presence of sea lice. During 2013 and 2015, the prevalence of sea lice ranged from 41 (n = 361) to 60% (n = 275) and 55 (n = 882) to 58% (n = 800) in Atlantic salmon and sea trout, respectively. All sea lice collected were identified as Lepeophtheirus salmonis. Mean L. salmonis infection intensity across the study period was 5.84 (range: 1-66) in Atlantic salmon and 6.45 (range: 1-37) in sea trout. Infection intensity was positively correlated with the amount of external damage present for both fish species. Given that the fish were examined when returning to freshwater, the lice burdens obtained may represent an underestimate. Nevertheless, these data provide important baseline information on 'natural' sea louse infections in South West England, which has been proposed as a potential region for aquaculture development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3354/dao03558 | DOI Listing |
J Aquat Anim Health
December 2024
Department of Health Management and Centre for Veterinary Epidemiological Research, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada.
Objective: The primary objective was to construct a time series model for the abundance of the adult female (AF) sea lice Lepeophtheirus salmonis in Atlantic Salmon Salmo salar farms in the Bay of Fundy, New Brunswick, Canada, for the period 2016-2021 and to illustrate its short-term predictive capabilities.
Methods: Sea lice are routinely counted for monitoring purposes, and these data are recorded in the Fish-iTrends database. A multivariable autoregressive linear mixed-effects model (second-order autoregressive structure) was generated with the outcome of the abundance of AF sea lice and included treatments, infestation pressures (a measure that represents the dose of exposure of sea louse parasitic stages to potential fish hosts) within sites (internal) and among sites (external), and other predictors.
Sci Rep
December 2024
Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, C1A 4P3, Canada.
Monitoring mortality is an essential strategy for fish health management. Commercial marine finfish sites in British Columbia, Canada, are required to report mortality events (MEs) to Fisheries and Oceans Canada (DFO), which makes these data publicly available. This study aimed to analyze the spatial and temporal patterns of ME composition and total MEs.
View Article and Find Full Text PDFPrev Vet Med
February 2025
Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, Ås N-1433, Norway.
Salmon lice (Lepeophtheirus salmonis) are parasites on salmonid fish and a density-dependent constraint to the sustainable farming of salmonids in open net pens. To control the parasites, fish farmers in Norway are required to count the number of salmon lice in different developmental stages on a subset of the fish each week. Furthermore, they must ensure that the number of adult female lice per fish does not increase beyond a specified threshold level.
View Article and Find Full Text PDFBMC Genomics
December 2024
Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK.
Background: The salmon louse (Lepeophtheirus salmonis) is a parasite of wild and farmed salmonid fish, causing huge economic damage to the commercial farming of Atlantic salmon (Salmo salar) in the northern hemisphere. The avermectin emamectin benzoate (EMB) is widely used for salmon delousing. While resistance to EMB is widespread in Atlantic populations of L.
View Article and Find Full Text PDFIn areas with high densities of salmon farming, spillover of the ectoparasitic salmon louse Lepeophtheirus salmonis poses a major threat to wild anadromous salmonids. By combining experimentally salmon louse infestation (mean ± standard deviation = 0.25 ± 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!