Of the biological activities of influenza C virus, haemagglutination, receptor inactivation and fusion, only the latter has been conclusively correlated with its surface glycoprotein (gp). We have purified the gp by octylglucoside treatment of influenza C virions followed by centrifugation into a sucrose gradient. Evidence was obtained that gp also represents the receptor-destroying enzyme of influenza C virus, which has been characterized as a neuraminate 9-O-acetylesterase: (i) it inactivated the receptors for influenza C virus on chicken erythrocytes; (ii) it had acetylesterase activity as indicated by the release of acetate from bovine submandibulary mucin; (iii) monoclonal antibodies directed against gp inhibited the acetylesterase activity of influenza C virus. Although purified gp was unable to agglutinate chicken red blood cells, it blocked haemagglutination by viruses. This finding as well as the haemagglutination inhibition activity of monoclonal anti-gp antibodies indicate that gp is also responsible for the haemagglutinating activity of influenza C virus. Thus, as the influenza C glycoprotein is the only myxovirus glycoprotein with three different activities, we propose the designation HEF in order to describe its function as a haemagglutinin (H), an esterase (E) and a fusion factor (F).

Download full-text PDF

Source
http://dx.doi.org/10.1099/0022-1317-69-4-839DOI Listing

Publication Analysis

Top Keywords

influenza virus
24
haemagglutinin esterase
8
esterase fusion
8
fusion factor
8
acetylesterase activity
8
activity influenza
8
influenza
7
virus
6
glycoprotein
4
glycoprotein influenza
4

Similar Publications

Epstein-Barr virus (EBV) establishes persistent infection, causes infectious mononucleosis, is a major trigger for multiple sclerosis and contributes to multiple cancers. Yet, knowledge remains incomplete about how the virus remodels host B cells to support lytic replication. We previously identified that EBV lytic replication results in selective depletion of plasma membrane (PM) B cell receptor (BCR) complexes, composed of immunoglobulin and the CD79A and CD79B signaling chains.

View Article and Find Full Text PDF

Influenza virus infects millions each year, contributing greatly to human morbidity and mortality. Upon viral infection, pathogen-associated molecular patterns activate pattern recognition receptors on host cells, triggering an immune response. The CD209 protein family, homologs of DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin), is thought to modulate immune responses to viruses.

View Article and Find Full Text PDF

Recent avian influenza outbreaks have heightened global concern over viral threats with the potential to significantly impact human health. Influenza is particularly alarming due to its history of causing pandemics and zoonotic reservoirs. In response, significant progress has been made toward the development of universal influenza vaccines, largely driven by the discovery of broadly neutralising antibodies (bnAbs), which have the potential to neutralise a broad range of influenza viruses, extending beyond the traditional strain-specific response.

View Article and Find Full Text PDF

Introduction: The H9N2 avian influenza virus is widely disseminated in poultry and poses a zoonotic threat, despite vaccination efforts. Mutations at residue 198 of hemagglutinin (HA) are critical for antigenic variation and receptor-binding specificity, but the underlying molecular mechanisms remain unclear. This study explores the molecular mechanisms by which mutations at the HA 198 site affect the antigenicity, receptor specificity, and binding affinity of the H9N2 virus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!