In domestic pigeons (Columba livia), the electrical activity of the major depressor muscle of the wing, the pectoralis (pars thoracicus), beings in late upstroke well before the wing begins its downstroke excursion. The two architecturally distinct heads of the pectoralis, the sternobrachialis and the thoracobrachialis, are differentially recruited during take-off, level flight and landing. In addition to wing depression, the sternobrachialis protracts the humerus and the thoracobrachialis retracts the humerus. At the point of transition from wing upstroke to downstroke, the pectoralis EMG signal typically exhibits a reduction in amplitude. The supracoracoideus, in addition to an expected EMG associated with wing elevation, is co-activated with the pectoralis about 50% of the time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.134.1.1 | DOI Listing |
Biomimetics (Basel)
December 2024
Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
In recent years, bioinspired insect flight has become a prominent research area, with a particular focus on beetle-inspired aerial vehicles. Studying the unique flight mechanisms and structural characteristics of beetles has significant implications for the optimization of biomimetic flying devices. Among beetles, (rhinoceros beetle) exhibits a distinct wing deployment-flight-retraction sequence, whereby the interaction between the hindwings and protective elytra contributes to lift generation and maintenance.
View Article and Find Full Text PDFExp Physiol
January 2025
Faculty of Kinesiology, University of Calgary, Calgary, Canada.
Biol Open
November 2024
Department of Biology, University of Washington, Seattle, WA 98195, USA.
Rev Sci Instrum
July 2024
College of Aerospace Engineering, Chongqing University, Chongqing 400044, China.
This paper introduces a method for measuring wing motion, deformation, and inertial forces in bio-inspired aircraft research using a camera motion capture system. The method involves placing markers on the wing surface and fitting rigid planes to determine the wing's spatial axis. This allows for describing the wing's rigid motion and obtaining deformation characteristics, such as deflection, twist angle, and gap distance of the forewing and hindwing.
View Article and Find Full Text PDFBioinspir Biomim
June 2024
Institute of Engineering, Academic Assembly, Shinshu University, Nagano 380-8553, Japan.
The diversity in butterfly morphology has attracted many people around the world since ancient times. Despite morphological diversity, the wing and body kinematics of butterflies have several common features. In the present study, we constructed a bottom-up butterfly model, whose morphology and kinematics are simplified while preserving the important features of butterflies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!