Purpose: Biomimetic approaches for the synthesis of silver nanoparticles (AgNPs) had created a substantial impression among the research community that focuses on nano-bio interactions. In this study, an eco-friendly method using aqueous leaf extract as a reductant-rich hydrosol was followed to synthesize AgNPs and test its cytotoxicity.
Methods: To optimise the parameters for the synthesis of AgNPs, central composite design based on response surface methodology was used. The particles synthesized at a nano-scale were characterized in our previously published report. The present report further characterizes the nanoparticles by X-ray diffraction, SEM and TEM at varying sites and magnifications. The characterized AgNPs were tested for their cytotoxic effects on HEK-293 and HeLa cells.
Results: The cytotoxicity on the cell lines was dose-dependent. At a concentration of 2.5 μL/mL of the AgNPs-containing hydrosol, 100% inhibition of HEK-293 cells and 75% inhibition of the HeLa cells were observed. The IC value for AgNPs on HEK-293 was 0.622 µL/mL (12.135 ng), whereas, for HeLa cells, it was 1.98 µL/mL (38.629 ng).
Conclusion: The nanoparticles were three-fold toxic towards the HEK-293 cells in comparison to the HeLa cells. Therefore, the therapeutic index is low for derived AgNPs on HeLa cells when tested in comparison with the HEK-293 cells. The nanotoxicity profile of the synthesized AgNPs seems more prominent than the nanotherapeutic index. According to our knowledge, this is the first-ever report on the optimization of synthesis of AgNPs using response surface methodology and identifying the therapeutic index of mangrove leaf-derived AgNPs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7868205 | PMC |
http://dx.doi.org/10.2147/IJN.S289008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!