Landscape-induced spatial oscillations in population dynamics.

Sci Rep

Department of Physics, PUC-Rio, Rua Marquês de São Vicente, 225, Rio de Janeiro, 22451-900, Brazil.

Published: February 2021

AI Article Synopsis

Article Abstract

We study the effect that disturbances in the ecological landscape exert on the spatial distribution of a population that evolves according to the nonlocal FKPP equation. Using both numerical and analytical techniques, we characterize, as a function of the interaction kernel, the three types of stationary profiles that can develop near abrupt spatial variations in the environmental conditions vital for population growth: sustained oscillations, decaying oscillations and exponential relaxation towards a flat profile. Through the mapping between the features of the induced wrinkles and the shape of the interaction kernel, we discuss how heterogeneities can reveal information that would be hidden in a flat landscape.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7876042PMC
http://dx.doi.org/10.1038/s41598-021-82344-8DOI Listing

Publication Analysis

Top Keywords

interaction kernel
8
landscape-induced spatial
4
spatial oscillations
4
oscillations population
4
population dynamics
4
dynamics study
4
study disturbances
4
disturbances ecological
4
ecological landscape
4
landscape exert
4

Similar Publications

Facial expression recognition faces great challenges due to factors such as face similarity, image quality, and age variation. Although various existing end-to-end Convolutional Neural Network (CNN) architectures have achieved good classification results in facial expression recognition tasks, these network architectures share a common drawback that the convolutional kernel can only compute the correlation between elements of a localized region when extracting expression features from an image. This leads to difficulties for the network to explore the relationship between all the elements that make up a complete expression.

View Article and Find Full Text PDF

The relationship between the early life gastrointestinal microbiome and childhood nocturnal cough.

J Allergy Clin Immunol

January 2025

Department of Public Health Sciences, Henry Ford Health, Detroit, MI; Center for Bioinformatics, Henry Ford Health, Detroit, MI. Electronic address:

Background: Nocturnal cough affects approximately 1 in 3 children, can negatively impact child health, and is often attributable to asthma. The association of the gut microbiome with nocturnal cough has not been investigated.

Objective: To investigate the association between early-life gut microbiome composition and nocturnal cough overall and in the context of asthma.

View Article and Find Full Text PDF

Integrating multi-omics data may help researchers understand the genetic underpinnings of complex traits and diseases. However, the best ways to integrate multi-omics data and use them to address pressing scientific questions remain a challenge. One important and topical problem is how to assess the aggregate effect of multiple genomic data types (e.

View Article and Find Full Text PDF

This study explored the use of mango lignocellulosic kernel biochar (MKB) modified with MnFeO magnetic nanoparticles and a Cu@Zn-BDC metal-organic framework (MOF) (MKB/MnFeO/Cu@Zn-BDC MOF) for tetracycline (TC) removal from aqueous solutions and hospital wastewater. The modified biochar exhibited strong magnetic properties (19.803 emu/g) and a specific surface area of 30.

View Article and Find Full Text PDF

Several studies have reported associations between specific heavy metals and essential trace elements and acute myocardial infarction (AMI). However, there is limited understanding of the relationships between trace elements and AMI in real-life co-exposure scenarios, where multiple elements may interact simultaneously. This cross-sectional study measured serum levels of 56 trace elements using inductively coupled plasma mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!