To endure environmental stresses, plants have evolved complex regulatory mechanisms involving phytohormones, including abscisic acid (ABA). The function of the plant-specific AT-rich sequence zinc-binding protein (PLATZ) family has not yet been extensively characterized in Arabidopsis (Arabidopsis thaliana). In this report, we evaluated the function of a putative member of the PLATZ family in Arabidopsis, ABA-INDUCED expression 1 (AIN1). We determined that AIN1 expression was induced by ABA and abiotic stresses. AIN1 overexpression (OE) enhanced ABA sensitivity and inhibited primary root elongation, but reduced expression of AIN1 in RNA interference (RNAi) plants produced roots less sensitive to ABA. When treated with ABA, we observed a reduction of meristem size and over-accumulation of reactive oxygen species (ROS) at the root tips of OE lines, demonstrating the importance of AIN1 in plant responses to ABA. A set of ROS scavenger genes showed reduced expression in the OE lines but improved in the RNAi plants relative to Col-0. In addition, we report that exogenous application of reduced glutathione (GSH) rescued the root growth defects seen in AIN1 overexpression lines treated with ABA. In summary, our results suggest that Arabidopsis AIN1 is involved in ABA-mediated inhibition of root elongation by modulating ROS homeostasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2021.110821 | DOI Listing |
Plant Cell Environ
January 2025
State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Germplasm Resources in North China, Ministry of Education, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China.
Plant-specific homeodomain-leucine zipper I (HD-Zip I) transcription factors (TFs) crucially regulate plant drought tolerance. However, their specific roles in maize (Zea mays L.) regulating drought tolerance remain largely unreported.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
Plant root and soil-associated microbiomes are influenced by niches, including bulk and rhizosphere soil. In this work, we collected bulk and rhizosphere soil samples at four potato developmental stages (leaf growth, flowering, tuber elongation and harvest) to identify whether rhizosphere microbiota are structured in a growth stage-dependent manner. The bacterial and fungal microbiota showed significant temporal differences in the rhizosphere and bulk soil.
View Article and Find Full Text PDFJ Craniofac Surg
November 2024
Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
Background: The septum is often underdeveloped in East Asian populations, and traditional endogenous extension stents may not adequately fulfill the requirements for rhinoplasty. Herein, we present an innovative exogenous extension framework featuring a mortise and tenon structure specifically designed for East Asians.
Methods: This framework comprises a mushroom-shaped rib cartilage component and a lancet-shaped expanded polytetrafluoroethylene (ePTFE) element, which are interconnected through a mortise and tenon design.
BMC Plant Biol
January 2025
Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.
Background: Non-structural carbohydrates (NSCs) are key substances for metabolic processes in plants, providing energy for growth, development, and responses to environmental stress. Pruning mother bamboo in a clump can significantly affect the NSCs allocation of new shoots, thereby affecting their growth. Moso bamboo (Phyllostachys edulis) is an important economic bamboo species with a highest planting area in China.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
On acidified soil, the growth of Eucalyptus is seriously restricted by aluminum (Al) stress. Therefore, breeding Eucalyptus species with excellent Al tolerance, developing the genetic potential of species, and improving tolerance to Al stress are important for the sustainable development of artificial Eucalyptus forests. By observing the occurrence and distribution of the main reactive oxygen species (ROS) and reactive nitrogen species (RNS) in root tips of Eucalyptus seedlings under Al stress, this study analyzed change in the growth and physiological indexes of Eucalyptus seedlings under Al stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!