Adverse environmental conditions such as drought stress greatly limit the growth and production of crops worldwide. In this study, SlGRAS4, a drought stress-responsive GRAS gene from tomato (Solanum lycopersicum) was functionally characterized. Repressing SlGRAS4 (SlGRAS4-RNAi) increased sensitivity to drought stress, whereas overexpressing SlGRAS4 (SlGRAS4-OE) in tomato enhanced tolerance of this stress. Under stress condition SlGRAS4-OE plants accumulated much less ROS than wild-type and SlGRAS4-RNAi plants. Numerous dehydration induced ROS-scavenging genes were upregulated in SlGRAS4-OE plants after drought stress, implying that SlGRAS4 confers drought tolerance by modulating ROS homeostasis. On the other hand, there are several abscisic acid (ABA)-responsive elements in SlGRAS4 promoter, the relative expression of ABA signaling genes including SlPYLs, SlPP2Cs and SlSnRK2s were verified in WT and transgenic plants both under normal and drought stress, the changed drought sensitivity of transgenic plants was mainly caused by SlSnRK2s, the positive regulators of ABA signaling. Our results suggested that SlGRAS4 directly binds to and activates SlSnRK2.4 promoter, belongs to subclass III SnRK2s, which play crucial role in ABA signaling. Protein studies revealed that SlSnRK2.4 interacts with SlAREB1 and SlAREB2, the major downstream transcription factors of ABA-dependent signaling pathway. SlGRAS4 therefore confers drought tolerance may be through SnRK2-AREB pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2020.110804 | DOI Listing |
Protoplasma
January 2025
Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India.
Stay-green (SG) and stem reserve mobilization (SRM) are two significant mutually exclusive traits, which contributes to grain-filling during drought and heat stress in wheat. The current research was conducted in a genome-wide association study (GWAS) panel consisting of 278 wheat genotypes of advanced breeding lines to find the markers linked with SG and SRM traits and also to screen the superior genotypes. SG and SRM traits, viz.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, People's Republic of China.
Hortic Res
January 2025
Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193.
Appropriate root system architecture (RSA) can improve alfalfa yield, yet its genetic basis remains largely unexplored. This study evaluated six RSA traits in 171 alfalfa genotypes grown under controlled greenhouse conditions. We also analyzed five yield-related traits in normal and drought stress environments and found a significant correlation (0.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary.
Sweet corn is highly susceptible to water deprivation, making it crucial to identify effective strategies for enhancing its tolerance to water deficit conditions. This study investigates the novel application of Spermine as a bio-stimulant to improve sweet corn (Zea mays L. var.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Botany, Lahore College for Women University, Lahore, Pakistan.
The present study was designed to highlight the ameliorative role of iron nanoparticles (FeNPs) against drought stress in spinach (Spinacia oleracea L.) plants. A pot experiment was performed in two-way completely randomize design with three replicates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!