A novel sweetpotato RING-H2 type E3 ubiquitin ligase gene IbATL38 enhances salt tolerance in transgenic Arabidopsis.

Plant Sci

Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China. Electronic address:

Published: March 2021

Arabidopsis Toxicos en Levadura (ATL) proteins compose a subfamily of E3 ubiquitin ligases and play major roles in regulating plant growth, cold, drought, oxidative stresses response and pathogen defense in plants. However, the role in enhancing salt tolerance has not been reported to date. Here, we cloned a novel RING-H2 type E3 ubiquitin ligase gene, named IbATL38, from sweetpotato cultivar Lushu 3. This gene was highly expressed in the leaves of sweetpotato and strongly induced by NaCl and abscisic acid (ABA). This IbATL38 was localized to nucleus and plasm membrane and possessed E3 ubiquitin ligase activity. Overexpression of IbATL38 in Arabidopsis significantly enhanced salt tolerance, along with inducible expression of a series of stress-responsive genes and prominently decrease of HO content. These results suggest that IbATL38 as a novel E3 ubiquitin ligase may play an important role in salt stress response.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2020.110802DOI Listing

Publication Analysis

Top Keywords

ubiquitin ligase
16
salt tolerance
12
ring-h2 type
8
type ubiquitin
8
ligase gene
8
ubiquitin
5
ibatl38
5
novel sweetpotato
4
sweetpotato ring-h2
4
ligase
4

Similar Publications

Background: Tubular injury triggered by hyperglycemia is an important pathological characteristic in diabetic nephropathy (DN). Accumulated advanced glycation end products and their precursor methylglyoxal (MGO), contribute to the development of DN. Carnosine has been shown to prevent the development of DN but the underlying mechanism still needs to be studied in depth.

View Article and Find Full Text PDF

Background: Hyperphosphorylated tau (pTau) in Alzheimer's disease (AD) brain tissue is a complex mix of multiple tau species that are variably phosphorylated on up to 55 epitopes. Emerging studies suggest that phosphorylation of specific epitopes may alter the role of tau. The role of specific pTau species can be explored through protein interaction ("interactome") studies.

View Article and Find Full Text PDF

Background: The direct and chaperone-associated interactions of E3 ubiquitin ligase CHIP with tau in Alzheimer's disease and other tauopathies, regulates tau turnover, by directly linking it to ubiquitination and proteasomal degradation, as well as through suppression of tau aggregation. Modulation of these CHIP-driven tau clearance mechanisms can be an effective treatment strategy. Antigen-binding antibody fragments (Fabs) are potent tools that can highly-selectively engage target proteins and act as functional probes or inhibitors.

View Article and Find Full Text PDF

Background: UFMylation is an understudied ubiquitin-like post-translational modification (PTM). Like ubiquitin, UFM1 is conjugated to substrates via a catalytic cascade involving a UFM1-specific E1 (UBA5), E2 (UFC1), and an E3 ligase complex (UFL1, DDRGK1 and CDK5RAP3). UFMylation is reversible, and this is mediated by UFSP2.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

UNC Chapel Hill, Chapel Hill, NC, USA.

Background: In the last decade, we have demonstrated that the brain-enriched E3 ubiquitin ligase TRIM9 regulates cytoskeletal dynamics, membrane remodeling, and netrin-dependent signaling pathways in all stages of neuron development, including the maturation of dendritic spines and electrophysiological activity. Moreover, TRIM9 protein levels increase in the adult brain and are maintained throughout adulthood. In the adult mouse TRIM9 is enriched within the postsynaptic density (PSD), a proteinaceous rich region in the post synapse, containing neurotransmitter receptors, scaffolding proteins, and cytoskeletal elements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!