Background: The mosquito Anopheles stephensi is a vector of urban malaria in Asia that recently invaded Africa. Studying the genetic basis of vectorial capacity and engineering genetic interventions are both impeded by limitations of a vector's genome assembly. The existing assemblies of An. stephensi are draft-quality and contain thousands of sequence gaps, potentially missing genetic elements important for its biology and evolution.
Results: To access previously intractable genomic regions, we generated a reference-grade genome assembly and full transcript annotations that achieve a new standard for reference genomes of disease vectors. Here, we report novel species-specific transposable element (TE) families and insertions in functional genetic elements, demonstrating the widespread role of TEs in genome evolution and phenotypic variation. We discovered 29 previously hidden members of insecticide resistance genes, uncovering new candidate genetic elements for the widespread insecticide resistance observed in An. stephensi. We identified 2.4 Mb of the Y chromosome and seven new male-linked gene candidates, representing the most extensive coverage of the Y chromosome in any mosquito. By tracking full-length mRNA for > 15 days following blood feeding, we discover distinct roles of previously uncharacterized genes in blood metabolism and female reproduction. The Y-linked heterochromatin landscape reveals extensive accumulation of long-terminal repeat retrotransposons throughout the evolution and degeneration of this chromosome. Finally, we identify a novel Y-linked putative transcription factor that is expressed constitutively throughout male development and adulthood, suggesting an important role.
Conclusion: Collectively, these results and resources underscore the significance of previously hidden genomic elements in the biology of malaria mosquitoes and will accelerate the development of genetic control strategies of malaria transmission.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7876825 | PMC |
http://dx.doi.org/10.1186/s12915-021-00963-z | DOI Listing |
Genome Med
January 2025
Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain.
Background: Familial Meniere's disease (FMD) is a rare polygenic disorder of the inner ear. Mutations in the connexin gene family, which encodes gap junction proteins, can also cause hearing loss, but their role in FMD is largely unknown.
Methods: We retrieved exome sequencing data from 94 individuals in 70 Meniere's disease (MD) families.
BMC Bioinformatics
January 2025
Auburn University, Auburn, AL, 36849, USA.
Background: Pacific Biosciences (PacBio) circular consensus sequencing (CCS), also known as high fidelity (HiFi) technology, has revolutionized modern genomics by producing long (10 + kb) and highly accurate reads. This is achieved by sequencing circularized DNA molecules multiple times and combining them into a consensus sequence. Currently, the accuracy and quality value estimation provided by HiFi technology are more than sufficient for applications such as genome assembly and germline variant calling.
View Article and Find Full Text PDFSci Data
January 2025
Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
Coreius guichenoti, mainly distributed in upstream regions of the Yangtze River China, is currently on the brink of extinction and listed as national secondary protected animal. In this study, we aimed to obtain the chromosome-level genome of C. guichenoti using PacBio and Hi-C techniques.
View Article and Find Full Text PDFSci Data
January 2025
International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya.
To address food and nutrition security in the face of burgeoning global populations and erratic climatic conditions there is a need to include nutrient dense, climatic resilient but neglected indigenous fruit trees in agrifood systems. Here we present the draft genome sequence of Kei Apple, Dovyalis afra, a neglected indigenous African fruit tree with untapped potential to contribute to nutrient security and improved livelihoods. Our long-read-based genome assembly comprises 440 Mbp sequence across 1190 contigs with a N50 and L50 of 13.
View Article and Find Full Text PDFSci Data
January 2025
State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
The Yadong trout (Salmo trutta), a species endemic to the Yatung River in Tibet, China, was classified as a second-class protected species in the 20th century. Now, it is considered one of the most important fishery resources in China. In this study, we assembled a near-complete genome of the S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!