Statins Attenuate Fibrotic Manifestations of Cardiac Tissue Damage.

Curr Mol Pharmacol

Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.

Published: March 2022

Cardiac fibrosis is a maladaptive condition secondary to cardiomyopathy caused by a wide spectrum of stimuli, including myocardial infarction (MI), pressure overload, hyperglycemia, aging, and other factors. Despite having been supposed to be a reparative mechanism, the development of cardiac fibrosis can result in undesirable outcomes like the disruption of excitation-contraction coupling and ventricular hypertrophy, leading finally to heart failure (HF). Statins are known as potent cardioprotective agents widely used to control dyslipidemia; these drugs have exhibited protective effects against manifestations of cardiac fibrosis and hypertrophy. Cumulative evidence has suggested that statins attenuate the severity of fibrotic and hypertrophic manifestations of cardiac damage by affecting a variety of mechanisms like differentiation of myofibroblasts and crosstalk between cells in cardiac tissue as well as altering the expression and function of different molecules involved in cardiac remodeling, including inflammatory cytokines and signaling molecules. It seems that statins can inhibit cardiac fibrosis and hypertrophy not only through their ability to inhibit hydroxymethylglutaryl-CoA reductase but also by their pleiotropic properties. This review aims to discuss the effects of statins on molecular pathways involved in the inhibition of fibrotic and hypertrophic remodeling in the heart, thereby potentially helping to recover proper cardiac size, plasticity, and functioning.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1874467214666210210123206DOI Listing

Publication Analysis

Top Keywords

cardiac fibrosis
16
manifestations cardiac
12
cardiac
9
statins attenuate
8
cardiac tissue
8
fibrosis hypertrophy
8
fibrotic hypertrophic
8
statins
5
attenuate fibrotic
4
fibrotic manifestations
4

Similar Publications

Background: The association of fragmented QRS (fQRS) with many cardiac pathologies such as cardiac fibrosis has been described previously. Paraaortic adipose tissue (PAT) is thought to be associated with many cardiac diseases and there is only one publication on its echocardiographic evaluation.

Aims: To describe the possible relationship between fQRS and PAT.

View Article and Find Full Text PDF

CCL2, a pivotal cytokine within the chemokine family, functions by binding to its receptor CCR2. The CCL2/CCR2 signaling pathway plays a crucial role in the development of fibrosis across multiple organ systems by modulating the recruitment and activation of immune cells, which in turn influences the progression of fibrotic diseases in the liver, intestines, pancreas, heart, lungs, kidneys, and other organs. This paper introduces the biological functions of CCL2 and CCR2, highlighting their similarities and differences concerning fibrotic disorders in various organ systems, and reviews recent progress in the diagnosis and treatment of clinical fibrotic diseases linked to the CCL2/CCR2 signaling pathway.

View Article and Find Full Text PDF

Background: Post-surgical tendon adhesion formation is a frequent clinical complication with limited treatment options. The aim of this study is to investigate safety and efficacy of orally administration of crocin in attenuating post-operative tendon-sheath adhesion bands in an Achilles tendon rat model.

Methods: Structural, mechanical, histological, and biochemical properties of Achilles tendons were analyzed in the presence and absence of crocin.

View Article and Find Full Text PDF

Hydroxytyrosol protects isoproterenol-induced myocardial infarction through activating notch signaling.

Iran J Basic Med Sci

January 2025

Department of Medical Pharmacology, Faculty of Medicine, Adıyaman University, Adıyaman, 02040, Turkey.

Objectives: In this investigation, the protective effects of hydroxytyrosol (HT) administered prior to myocardial infarction in rats were examined, with a particular focus on its potential roles within the Notch pathway.

Materials And Methods: The animals were categorized into seven groups (n=7): control, myocardial infarction (MI) 6 hr, MI 24 hr, MI 7 day, MI+HT 6 hr, MI+HT 24 hr, MI+HT 7 day. In order to create infarction, the rats received a subcutaneous injection of isoproterenol at a dose of 200 mg/kg.

View Article and Find Full Text PDF

Background: Pompe disease is a rare genetic disorder caused by a deficiency of the enzyme acid alpha-glucosidase. This condition leads to muscle weakness, respiratory problems, and heart abnormalities in affected individuals.

Methods: The aim of the study is to share our experience through cross sectional study of patients with infantile-onset Pompe disease (IOPD) with different genetic variations, resulting in diverse clinical presentations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!