Tumor and stromal interactions consist of reciprocal signaling through cytokines, growth factors, direct cell-cell interactions, and extracellular vesicles (EVs). Small EVs (≤200 nm) have been considered critical messengers of cellular communication during tumor development. Here, we demonstrate that gain-of-function (GOF) p53 protein can be packaged into small EVs and transferred to fibroblasts. GOF p53 protein is selectively bound by heat shock protein 90 (HSP90), a chaperone protein, and packaged into small EVs. Inhibition of HSP90 activity blocks packaging of GOF, but not wild-type, p53 in small EVs. GOF p53-containing small EVs result in their conversion to cancer-associated fibroblasts. In vivo studies reveal that GOF p53-containing small EVs can enhance tumor growth and promote fibroblast transformation into a cancer-associated phenotype. These findings provide a better understanding of the complex interactions between cancer and stromal cells and may have therapeutic implications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957825 | PMC |
http://dx.doi.org/10.1016/j.celrep.2021.108726 | DOI Listing |
Extracell Vesicle
December 2024
The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA.
Extracellular vesicles (EVs), submicron-sized membranous structures released by cells, serve as vehicles of tissue-specific proteins and nucleic acids, facilitating intercellular communication and playing roles in pathophysiological processes. Leveraging their unique characteristics, EVs have emerged as promising drug delivery nanocarriers. Electroporation (EP) and ultrasonication (US) are among the prevalent techniques used for loading exogenous drugs into EVs owing to their simplicity and efficiency.
View Article and Find Full Text PDFSmall
December 2024
Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
The heterogeneity of extracellular vesicles (EVs) surface information represents different functions, which is neglected in previous studies. In this study, a label-free SERS analysis approach is demonstrated to study fundamental EV biological and physical information heterogeneity by matching specific sizes of nano-enhanced particles. This strategy reveals informative, comprehensive, and high-quality SERS spectra of the overall exosome surface, and effectively circumvents the key information loss caused by the spatial resistance of NPs binding to the 293 exosomes' concave structure.
View Article and Find Full Text PDFRNA Biol
December 2025
Paracrine Therapeutics Pte. Ltd, Tai Seng Exchange, Singapore, Singapore.
Mesenchymal Stromal/Stem Cells (MSCs) are among the most frequently studied cell types in clinical trials, and their small extracellular vesicles (sEVs) are now being extensively investigated for therapeutic applications. The RNA cargo of MSC-sEVs, particularly miRNAs and mRNAs, is widely believed to be a key therapeutic component of these vesicles. In this review, we critically examine using first principles and peer-reviewed literature, whether MSC- extracellular vesicles (MSC-EVs) can deliver sufficient quantity of functional miRNA or mRNA to target compartments within recipient cells to elicit a pharmacological response.
View Article and Find Full Text PDFMol Cell Biochem
December 2024
Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Henan Xinxiang, 453003, People's Republic of China.
To investigate the promoting effect of extracellular vesicles derived from myocardial cells (CM-EVs) on the reprogramming of cardiac fibroblasts (CFs) into cardiomyocyte-like cells (iCMs) and their therapeutic effect on myocardial infarction (MI) in rats. Cell experiments: The differential adhesion method was used to obtain Sprague Dawley (SD) suckling rat CFs and cardiomyocytes (CMs), while the ultracentrifugation method was used to obtain CM-EVs. Transmission electron microscopy and nanoparticle tracking technology were used to analyze and determine the morphology and particle size of CM-EVs.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Department of Biochemistry, Purdue University, West Lafayette, IN, USA.
Extracellular vesicles (EVs) are small membrane-bound structures that play important roles in intercellular communication and the transfer of biomolecules between cells. EVs have become a topic of interest for research in translational proteomics for disease biomarker discovery due to their ability to reflect changes in the cellular proteome, including diseases affecting the brain. Utilizing the proteome analysis of EVs to its fullest potential requires proper isolation and purity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!