The mammillary body is a hypothalamic nucleus that has important functions in memory and spatial navigation, but its developmental principles remain not well understood. Here, we identify progenitor-specific Fezf2 expression in the developing mammillary body and develop an intersectional fate-mapping approach to demonstrate that Fezf2 mammillary progenitors generate mammillary neurons in a rostral-dorsal-lateral to caudal-ventral-medial fashion. Axonal tracing from different temporal cohorts of labeled mammillary neurons reveal their topographical organization. Unsupervised hierarchical clustering based on intrinsic properties further identify two distinct neuronal clusters independent of birthdates in the medial nuclei. In addition, we generate Fezf2 knockout mice and observe the smaller mammillary body with largely normal anatomy and mildly affected cellular electrophysiology, in contrast to more severe deficits in neuronal differentiation and projection in many other brain regions. These results indicate that Fezf2 may function differently in the mammillary body. Our results provide important insights for mammillary development and connectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2021.108712 | DOI Listing |
Comput Med Imaging Graph
January 2025
Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, CHU Clermont-Ferrand, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France.
Methods for the automated segmentation of brain structures are a major subject of medical research. The small structures of the deep brain have received scant attention, notably for lack of manual delineations by medical experts. In this study, we assessed an automated segmentation of a novel clinical dataset containing White Matter Attenuated Inversion-Recovery (WAIR) MRI images and five manually segmented structures (substantia nigra (SN), subthalamic nucleus (STN), red nucleus (RN), mammillary body (MB) and mammillothalamic fascicle (MT-fa)) in 53 patients with severe Parkinson's disease.
View Article and Find Full Text PDFEBioMedicine
January 2025
Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurology, Faculty of Medicine, University of Bonn, Germany. Electronic address:
Background: Emerging findings indicate that the hypothalamus, the body's principal homeostatic centre, plays a crucial role in modulating cognition, but comprehensive population-based studies are lacking.
Methods: We used cross-sectional data from the Rhineland Study (N = 5812, 55.2 ± 13.
J Neurosurg
December 2024
1Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota.
Objective: The floor of the third ventricle and the interpeduncular and prepontine regions represent challenging surgical targets. The expanded endoscopic endonasal approach (EEA) with pituitary gland (PG) transposition has been proposed to provide direct access to these anatomical regions. Through the years, different endoscopic PG transposition techniques have been studied and presented.
View Article and Find Full Text PDFBehav Brain Res
March 2025
Radiology and Neuroradiology Unit, Department of Imaging, Radiation Therapy and Hematology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli, 1, Rome 00168, Italy.
AJNR Am J Neuroradiol
October 2024
From the Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, UK (U.L.,F.D.), Laboratory of Developmental Biology, CNRS, Sorbonne-University, IPBS, Paris, France (M.C.), Department of Radiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States (M.H.L.), Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy (R.P.), Department of Radiology, Tartu University Hospital, Tartu, Estonia (P.I., D.L., A.T.), Department of Radiology, The University of Tartu, Tartu, Estonia (P.I.), UOC Neuroradiologia, ASST Papa Giovanni XXIII, Bergamo, Italy (G.P.), Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK (I.C.), Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy (M.S., A.R.) and Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy (A.R.).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!