The pyruvate dehydrogenase complex (PDHc) is a giant enzymatic assembly involved in pyruvate oxidation. PDHc components have been characterized in isolation, but the complex's quaternary structure has remained elusive due to sheer size, heterogeneity, and plasticity. Here, we identify fully assembled Chaetomium thermophilum α-keto acid dehydrogenase complexes in native cell extracts and characterize their domain arrangements utilizing mass spectrometry, activity assays, crosslinking, electron microscopy (EM), and computational modeling. We report the cryo-EM structure of the PDHc core and observe unique features of the previously unknown native state. The asymmetric reconstruction of the 10-MDa PDHc resolves spatial proximity of its components, agrees with stoichiometric data (60 E2p:12 E3BP:∼20 E1p: ≤ 12 E3), and proposes a minimum reaction path among component enzymes. The PDHc shows the presence of a dynamic pyruvate oxidation compartment, organized by core and peripheral protein species. Our data provide a framework for further understanding PDHc and α-keto acid dehydrogenase complex structure and function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2021.108727 | DOI Listing |
PLoS One
January 2025
Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands.
Thrips tabaci is the main thrips species affecting onion and related species. It is a cryptic species complex comprising three phylogenetic groups characterized by different reproductive modes (thelytoky or arrhenotoky) and host plant specialization. Thrips tabaci populations vary widely in genetic diversity, raising questions about the factor(s) that drive this diversity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.
Lignin degradation by biocatalysts is a key strategy to develop a plant-based sustainable carbon economy and thus alleviate global climate change. This process involves synergy between ligninases and auxiliary enzymes. However, auxiliary enzymes within secretomes, which are composed of thousands of enzymes, remain enigmatic, although several ligninolytic enzymes have been well characterized.
View Article and Find Full Text PDFBiodegradation
January 2025
Civil and Environmental Engineering, Duke University, Hudson Hall 121, Box 90287, Durham, NC, 27708, USA.
Mycoremediation is a biological treatment approach that relies on fungi to transform environmental pollutants into intermediates with lower environmental burden. Basidiomycetes have commonly been used as the target fungal phylum for bioaugmentation in mycoremediation, however this phylum has been found to be unreliable when used at scale in the field. In this study, we isolated, characterized, and identified potential polycyclic aromatic hydrocarbon (PAH) degrading fungal isolates from creosote-contaminated sediment in the Elizabeth River, Virginia.
View Article and Find Full Text PDFMar Drugs
December 2024
Univ Brest, Institut de Recherche pour le Développement (IRD), CNRS, Ifremer, LEMAR, IUEM, F-29280 Plouzane, France.
This study focuses on developing innovative and eco-friendly purification methods for the isolation of bioactive compounds derived from , a brown abundant macroalga in Djibouti. Three distinct fractions, obtained via liquid-liquid extraction (LLE_FAE), solid-phase extraction (SPE_WE50), and flash chromatography (FC_EtOH20), were selected based on their high phenolic content and antioxidant activities. All fractions were also evaluated for their anti-ageing potential by assessing their ability to inhibit two vital skin-ageing enzymes, tyrosinase and elastase.
View Article and Find Full Text PDFCurr Issues Mol Biol
January 2025
School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
Mitochondrial homeostasis is crucial for maintaining cellular energy production and preventing oxidative stress, which is essential for overall cellular function and longevity. Mitochondrial damage and dysfunction often occur concomitantly in myocardial ischemia-reperfusion injury (MIRI). Notoginsenoside R1 (NGR1), a unique saponin from the traditional Chinese medicine Panax notoginseng, has been shown to alleviate MIRI in previous studies, though its precise mechanism remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!