A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Virtual simulation of otolith movement for the diagnosis and treatment of benign paroxysmal positional vertigo. | LitMetric

Benign paroxysmal positional vertigo (BPPV) is a clinical condition. The existing diagnostic methods cannot determine the specific location of otolith on the short or long brachial sides. Thus, visual and quantitative evaluation of the existing clinical standard diagnostic modality Dix-Hallpike test is needed to improve medical efficiency. Our goal was to develop a real-time virtual simulation system to assess a BPPV treatment manipulation. In this study, we used the proposed simulation system to observe otolith movement during a posterior semicircular canal BPPV diagnostic test, and to analyze the diagnostic mechanisms and strategies. Through visual cluster analysis of otolith position and analysis of otolith movement time in the standard Dix-Hallpike test, we can find that the positions of otoliths are relatively scattered, especially on the -axis (  = 10.67 ± 3.98), and the fall time of otoliths at different positions has relatively large changes (  = 22.21 ± 1.40). But in the modified experiment  = 4.93 ± 0.32 and  = 26.21 ± 0.28. The experimental results show that the simulation system could track the state and the movement of otolith in real-time, which is of great significance for understanding the diagnostic mechanisms of BPPV evaluations and improving the diagnostic method.

Download full-text PDF

Source
http://dx.doi.org/10.1515/bmt-2020-0278DOI Listing

Publication Analysis

Top Keywords

otolith movement
12
simulation system
12
virtual simulation
8
benign paroxysmal
8
paroxysmal positional
8
positional vertigo
8
dix-hallpike test
8
diagnostic mechanisms
8
analysis otolith
8
otolith
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!