The intramolecular "inverse" frustrated Lewis pairs (FLPs) of general formula 1-BR -2-[(Me N) C=N]-C H (3-6) [BR =BMes (3), BC H , (4), BBN (5), BBNO (6)] were synthesized and structurally characterized by multinuclear NMR spectroscopy and X-ray analysis. These novel types of pre-organized FLPs, featuring strongly basic guanidino units rigidly linked to weakly Lewis acidic boryl moieties via an ortho-phenylene linker, are capable of activating H-H, C-H, N-H, O-H, Si-H, B-H and C=O bonds. 4 and 5 deprotonated terminal alkynes and acetylene to form the zwitterionic borates 1-(RC≡C-BR )-2-[(Me N) C=NH]-C H (R=Ph, H) and reacted with ammonia, BnNH and pyrrolidine, to generate the FLP adducts 1-(R HN→BR )-2-[(Me N) C=NH]-C H , where the N-H functionality is activated by intramolecular H-bond interactions. In addition, 5 was found to rapidly add across the double bond of H CO, PhCHO and PhNCO to form cyclic zwitterionic guanidinium borates in excellent yields. Likewise, 5 is capable of cleaving H , HBPin and PhSiH to form various amino boranes. Collectively, the results demonstrate that these new types of intramolecular FLPs featuring weakly Lewis acidic boryl and strongly basic guanidino moieties are as potent as conventional intramolecular FLPs with strongly Lewis acidic units in activating small molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202005143DOI Listing

Publication Analysis

Top Keywords

lewis acidic
12
intramolecular "inverse"
8
"inverse" frustrated
8
frustrated lewis
8
lewis pairs
8
flps featuring
8
basic guanidino
8
weakly lewis
8
acidic boryl
8
-2-[me c=nh]-c
8

Similar Publications

Group 4 metallocenes are competent catalysts for the oligomerization of higher α-olefins. Among the many chemical and physical variables of importance in the process, one is the choice of cocatalyst (activator). The impact of various activators on the performance of a representative catalyst, (nBuCp)ZrCl, in the oligomerization of 1-octene was thoroughly investigated; in particular, the molecular weight distribution (MWD) of the oligomers was determined by means of high-resolution high performance liquid chromatography (HR-HPLC).

View Article and Find Full Text PDF

Realizing an Energy-Dense Potassium Metal Battery at -40 °C via an Integrated Anode-Free and Dual-Ion Strategy.

J Am Chem Soc

January 2025

School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China.

Potassium (K)-based batteries hold great promise for cryogenic applications owing to the small Stokes radius and weak Lewis acidity of K. Nevertheless, energy-dense (>200 W h kg) K batteries under subzero conditions have seldom been reported. Here, an over 400 W h kg K battery is realized at -40 °C via an anode-free and dual-ion strategy, surpassing these state-of-the-art K batteries and even most Li/Na batteries at low temperatures (LTs).

View Article and Find Full Text PDF

Abstraction of Hydride from Alkanes and Dihydrogen by the Perfluorotrityl Cation.

Angew Chem Int Ed Engl

January 2025

Texas A&M University, Department of Chemistry, Texas A&M University, 77842, College Station, UNITED STATES OF AMERICA.

Lewis acids play a central role in a large variety of chemical transformations. The reactivity of the strongest Lewis acids is typically studied in the context of affinity towards hard bases, such as fluoride or oxygenous species. Carbocations can be viewed as soft Lewis acids, possessing significant affinity for softer bases, such as hydride.

View Article and Find Full Text PDF

The synthesis of metal-organic frameworks (MOFs) by low energy input has been a long-term target for practical applications yet remains a great challenge. Herein, we developed a low-energy MOF growth strategy at a temperature down to 50 °C by simply introducing seeds into the reaction system. The MOFs are continuously grown on the surface of the seeds at a growth rate dozens of times higher than that of conventional solvothermal synthesis at low temperature, while the resulting MOFs possess high crystallinity, porosity, and stability similar to solvothermal seeds.

View Article and Find Full Text PDF

This work addresses fundamental questions that deepen our understanding of secondary coordination sphere effects on carbon dioxide (CO2) reduction using derivatized hydride analogues of the type, [Cp*Fe(diphosphine)H] (Cp* = C5Me5-) - a well-studied family of organometallic complex - as models. More precisely, we describe the general reactivity of [(Cp*-BR2)Fe(diphosphine)H], which contains an intramolecularly positioned Lewis acid, and its cooperative reactivity with CO2. Control experiments underscore the critical nature of borane incorporation for CO2 to reduced products, a reaction that does not occur for unfunctionalized [Cp*Fe(diphosphine)H]).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!