Adolescent idiopathic scoliosis, is a three-dimensional spinal deformity characterized by lateral curvature and axial rotation around the vertical body axis of the spine, the cause of which is yet unknown. The fast progression entails regular clinical monitoring, including X-rays. Here we present an approach to evaluate scoliosis from the three-dimensional image of a patient's torso, captured by an ionizing radiation free body scanner, in combination with a model of the ribcage and spine. A skeletal structure of the ribcage and vertebral column was modelled with computer aided designed software and was used as an initial structure for macroscopic finite element method simulations. The basic vertebral column model was created for an adult female in an upright position. The model was then used to simulate the patient specific scoliotic spine configurations. The simulations showed that a lateral translation of a vertebral body results in an effective axial rotation and could reproduce the spinal curvatures. The combined method of three-dimensional body scan and finite element model simulations thus provide quantitative anatomical information about the position, rotation and inclination of the thoracic and lumbar vertebrae within a three-dimensional torso. Furthermore, the simulations showed unequal distributions of stress and strain profiles across the intervertebral discs, due to their distortions, which might help to further understand the pathogenesis of scoliosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7875351 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0243736 | PLOS |
Neural Netw
December 2024
Department of Earth Science and Engineering, Imperial College London, Prince Consort Road, London SW7 2BP, UK; Centre for AI-Physics Modelling, Imperial-X, White City Campus, Imperial College London, W12 7SL, UK.
Machine learning (ML) has benefited from both software and hardware advancements, leading to increasing interest in capitalising on ML throughout academia and industry. There have been efforts in the scientific computing community to leverage this development via implementing conventional partial differential equation (PDE) solvers with machine learning packages, most of which rely on structured spatial discretisation and fast convolution algorithms. However, unstructured meshes are favoured in problems with complex geometries.
View Article and Find Full Text PDFJ Exp Biol
January 2025
College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia.
Comparative finite element analysis involves standardising aspects of models to test equivalent loading scenarios across species. However, regarding feeding biomechanics of the vertebrate skull, what is considered "equivalent" can depend on the hypothesis. Using 13 diversely-shaped skulls of marsupial bettongs and potoroos (Potoroidae), we demonstrate that scaling muscle forces to standardise specific aspects of biting mechanics can produce clearly opposing comparisons of stress or strain that are differentially suited to address specific kinds of hypotheses.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
National Centre for Coastal Research (NCCR), Ministry of Earth Sciences (MoES), Chennai, India.
Tsunamis are massive waves generated by sudden water displacement on the ocean surface, causing devastation as they sweep across the coastlines, posing a global threat. The aftermath of the 2004 Indian Ocean tsunami led to the establishment of the Indian Tsunami Early Warning System (ITEWS). Predicting real-time tsunami heights and the resulting coastal inundation is crucial in ITEWS to safeguard the coastal communities.
View Article and Find Full Text PDFHeliyon
July 2024
Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XQ, UK.
This study explores the inspection of bolted connections in wind turbines, specifically focusing on the application of Phased Array Ultrasonic Testing (PAUT). The research comprises four sections: Acoustoelastic Constant calibration, high tension investigation on bolts, blind tests on larger bolts, and Finite Element Analysis (FEA) verification. The methodology shows accurate results for stress while the bolt is under operative loads, and produces a clear indication of when it is above these loads and beginning to deform.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510378, P. R. China.
Background: The location and size of necrotic lesions are important factors for collapse, The preserved angles (PAs) are divided into anterior preserved angle (APA) and lateral preserved angle (LPA), which could accurately measure the location of necrosis lesion. We used them to evaluate the effect of the location and size of necrotic lesions on collapse by finite element analysis, to offer a framework for evaluating the prognosis of osteonecrosis of the femoral head (ONFH) in clinical settings.
Methods: 3 left hip models were constructed based on CT data.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!