Toward Full Configuration Interaction for Transition-Metal Complexes.

J Phys Chem A

Department of Chemistry, University of Michigan, 930N. University Avenue, Ann Arbor 48109, Michigan, United States.

Published: February 2021

An efficacious approximation to full configuration interaction (FCI) is adapted to calculate singlet-triplet gaps for transition-metal complexes. This strategy, incremental FCI (iFCI), uses a many-body expansion to systematically add correlation to a simple reference wave function and therefore achieves greatly reduced computational costs compared to FCI. iFCI through the 3-body expansion is demonstrated on four model transition-metal complexes involving the metals Zn, V, and Cu. Screening techniques to increase the computational efficiency of iFCI are proposed and tested, showing reduction in the number of 3-body terms by more than 90% with controlled errors. The largest complex treated herein by iFCI has 142 valence electrons, all of which are correlated among the full set of 444 active orbitals. Computed spin gaps approach experimental results for the four complexes, though room for improvement remains.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.0c07624DOI Listing

Publication Analysis

Top Keywords

transition-metal complexes
12
full configuration
8
configuration interaction
8
fci ifci
8
interaction transition-metal
4
complexes
4
complexes efficacious
4
efficacious approximation
4
approximation full
4
interaction fci
4

Similar Publications

Metals in Motion: Understanding Labile Metal Pools in Bacteria.

Biochemistry

January 2025

Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, United States.

Metal ions are essential for all life. In microbial cells, potassium (K) is the most abundant cation and plays a key role in maintaining osmotic balance. Magnesium (Mg) is the dominant divalent cation and is required for nucleic acid structure and as an enzyme cofactor.

View Article and Find Full Text PDF

Extraction of cellulose nanocrystals from date seeds using transition metal complex-assisted hydrochloric acid hydrolysis.

Int J Biol Macromol

January 2025

Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates. Electronic address:

In this study, the role of a transition metal complex in improving hydrolysis efficiency during nanocellulose production was analysed. Cellulose nanocrystals (CNCs) were extracted from date seeds by incorporating a copper metal complex during HCl hydrolysis. In contrast to traditional HCl hydrolysis at moderate conditions, which yielded only microcrystalline cellulose (MCC), this approach resulted in the extraction of CNCs with a 10 % improved yield compared to MCC.

View Article and Find Full Text PDF

Thermodynamic Stability in Transition Metal-Hydrogen Dications: Potential Energy Curves, Spectroscopic Parameters, and Bonding for VH.

J Comput Chem

January 2025

Universidade de São Paulo, Instituto de Química, Departamento de Química Fundamental, São Paulo, Brazil.

Seventeen electronic states of the dication VH were characterized by the SA-CASSCF/icMRCI methodology using very extended basis sets; 11 were described for the first time. Potential energy curves were constructed and the associated spectroscopic parameters evaluated. Triplet and quintet states correlating with the V + H channel are thermodynamic stable.

View Article and Find Full Text PDF

The functionalization of pyridines at positions remote to the N-atom remains an outstanding problem in organic synthesis. The inherent challenges associated with overriding the influence of the embedded N-atom within pyridines was overcome using n-butylsodium, which provided an avenue to deprotonate and functionalize the C4-position over traditionally observed addition products that are formed with organolithium bases. In this work, we show that freshly generated 4-sodiopyrdines could undergo transition metal free alkylation reactions directly with a variety of primary alkyl halides bearing diverse functional groups.

View Article and Find Full Text PDF

Background: Neurodegeneration is characterized by the progressive loss of neurons. However, the mechanisms by which neurons die in Alzheimer's disease (AD) remain elusive. Disrupted iron homeostasis is associated with accelerated cognitive decline, amyloid beta deposition, and AD progression, but its pathogenic relevance is poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!