Transportation is the fastest-growing source of greenhouse gas (GHG) emissions and energy consumption globally. While the convergence of shared mobility, vehicle automation, and electrification has the potential to drastically reduce transportation impacts, it requires careful integration with rapidly evolving electricity systems. Here, we examine these interactions using a U.S.-wide simulation framework encompassing private electric vehicles (EVs), shared automated EVs (SAEVs), charging infrastructure, controlled EV charging, and a grid economic dispatch model to simulate personal mobility exclusively using EVs. We find that private EVs with uncontrolled charging would reduce GHG emissions by 46% compared to gasoline vehicles. Private EVs with fleetwide controlled charging would achieve a 49% reduction in emissions from baseline and reduce peak charging demand by 53% from the uncontrolled scenario. We also find that an SAEV fleet 9% the size of today's active vehicle fleet can satisfy trip demand with only 2.6 million chargers (0.2 per EV). Such an SAEV fleet would achieve a 70% reduction in GHG emissions at 41% of the lifecycle cost as a private EV fleet with controlled charging. The emissions and cost advantage of SAEVs is primarily due to reduced vehicle manufacturing compared with private EVs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.0c06655DOI Listing

Publication Analysis

Top Keywords

ghg emissions
12
controlled charging
12
private evs
12
shared automated
8
electric vehicles
8
personal mobility
8
greenhouse gas
8
saev fleet
8
private
6
emissions
6

Similar Publications

Background: Climate change is a global challenge, caused by increasing greenhouse gas (GHG) emissions. Dental clinical practice contributes to these emissions through patient and staff travel, waste, energy and water consumption and procurement. Carbon footprinting quantifies GHG emissions.

View Article and Find Full Text PDF

The role of biochar in reducing greenhouse gas (GHG) emissions and improving soil health is a topic of extensive research, yet its effects remain debated. Conflicting evidence exists regarding biochar's impact on soil microbial-mediated emissions with respect to different GHGs. This study systematically examines these divergent perspectives, aiming to investigate biochar's influence on GHG emissions and soil health in agricultural soils.

View Article and Find Full Text PDF

Moderate grazing reduces while mowing increases greenhouse gas emissions from a steppe grassland: Key modulating function played by plant standing biomass.

J Environ Manage

January 2025

Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China. Electronic address:

Grassland represents one of the most expansive terrestrial ecosystems, exerting a profound influence on atmospheric greenhouse gas (GHG) levels within the broader context of global change. Both climate and land use changes play important roles in modulating grassland GHG emissions by directly or indirectly altering soil physical and chemical properties, especially soil temperature and inorganic nitrogen content. The optimal grassland management practices need to simultaneously meet the requirements of reducing GHG emissions, maintaining biological biodiversity, and ensuring productivity.

View Article and Find Full Text PDF

Amid ambitious net-zero goals and growing demands for freight logistics, addressing the climate challenges posed by the heavy-duty truck (HDT) sector is an urgent and pivotal task. This study develops an integrated HDT model by incorporating vehicle dynamic simulation and life cycle analysis to quantify energy consumption, greenhouse gas (GHG) emissions, and total cost of ownership associated with three emerging powertrain technologies in various truck use scenarios in China, including battery electric, fuel cell electric, and hydrogen combustion engine trucks. The results reveal varying levels of economic suitability for these powertrain alternatives depending on required driving ranges and duty cycles: the battery electric for regional-haul applications, the hydrogen fuel cell for longer-haul and low-load driving conditions, and the hydrogen combustion engine to meet high power requirements.

View Article and Find Full Text PDF

Development of national post-fire restoration system to assess net GHG impacts and salvage biomass availability.

MethodsX

December 2024

Natural Resources Canada, Canadian Forest Service, 506 Burnside Road West, Victoria, BC, V8Z1M5, Canada.

In light of the recent unprecedented wildfires in Canada and the potential for increasing burned areas in the future, there is a need to explore post-fire salvage harvest and restoration and the implications for greenhouse gas (GHG) emissions. Salvage logging and replanting initiatives offer a potential solution by regrowing forests more quickly while meeting societal demands for wood and bioenergy. This study presents a comprehensive modeling framework to estimate post-fire salvage biomass and net GHG emissions relative to a 'do-nothing' baseline for all of Canada's harvest-eligible forests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!