Phenotyping Aquatic Neurotoxicity Induced by the Artificial Sweetener Saccharin at Sublethal Concentration Levels.

J Agric Food Chem

Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.

Published: February 2021

Artificial sweeteners (ASs) have generally been applied as food additives to improve the taste of sweetness. Thus, their potential toxic effects have received extensive attention. Saccharin (SAC), discovered more than a century ago, has been used as the first noncaloric AS in foods and beverages for over 100 years. Although the toxicological effects such as carcinogenicity of SAC have been controversial for a long time, there is a paucity of knowledge covering its potential behavioral toxicity and neurotoxicity. Methodologically, in current research, adult zebrafish neurobehavioral phenotypic screening approaches were introduced to systematically delineate the potential behavioral and neural toxicity of SAC by phenotyping the comprehensive neuro-behavioral profiles of adult zebrafish, which were chronically (2 months) subject to SAC (0, 1, 10, and 50 mg/L) exposure. Subsequently, a cohort of standard neurobehavioral tests including the light/dark preference (LDP) test, novel tank diving (NTD) test, novel object recognition (NOR) test, social interaction test (SIT), color-associated learning and memory test, and conditional place preference test were applied to delineate the general adverse effect of SAC. Specifically, in a concentration-dependent manner, SAC significantly increased the preference toward the dark side in the LDP test, inhibited exploratory behavior to the top arena in the NTD test, dampened the motivation to explore the novel object in the NOR test, weakened social preference in the SIT, and interfered in the color-based associative learning and memory ability. For example, in the LDP test, SAC remarkably increased the swimming distance of zebrafish in the dark part from 222 ± 34.6 (control group) to 675 ± 35.0 (50 mg/L group). Finally, the quantity of certain key neurotransmitters was further measured to determine the alteration induced by SAC on the brain chemistry. In total, the current research would provide a versatile neurobehavioral phenomics-based strategy to phenotypically screen the neurotoxicity of food additives at the overall animal level and provide a reference for further neurotoxicity exploration at the tissue and molecular level.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.0c05872DOI Listing

Publication Analysis

Top Keywords

ldp test
12
test
10
food additives
8
sac
8
potential behavioral
8
adult zebrafish
8
test novel
8
ntd test
8
novel object
8
learning memory
8

Similar Publications

Background/objectives: The emergence of the Omicron variant has complicated COVID-19 control and prompted vaccine updates. Recent studies have shown that a fourth dose significantly protects against infection and severe disease, though long-term immunity data remain limited. This study aimed to assess Anti-S-RBD antibodies and interferon-γ levels in healthcare workers 12 months after receiving bivalent Original/Omicron BA.

View Article and Find Full Text PDF

Aims/hypothesis: Immunotherapeutics targeting T cells are crucial for inhibiting autoimmune disease progression proximal to disease onset in type 1 diabetes. There is an outstanding need to augment the durability and effectiveness of T cell targeting therapies by directly restraining proinflammatory T cell subsets, while simultaneously augmenting regulatory T cell (Treg) activity. Here, we present a novel strategy for preventing diabetes incidence in the NOD mouse model using a blocking monoclonal antibody targeting the type 1 diabetes risk-associated T cell co-stimulatory receptor, CD226.

View Article and Find Full Text PDF

Background: There have been great efforts in vaccine design against HIV-1 since 1981. Various approaches have been investigated, including optimized delivery systems and effective adjuvants to enhance the efficacy of selective antigen targets. In this study, we evaluated the efficiency of IMT-P8 and LDP12 cell penetrating peptides in eliciting immune responses against HIV-1 Nef-MPER-V3 fusion protein as an antigen candidate.

View Article and Find Full Text PDF

Food wastes have a large number of functional ingredients that have potential for valorization. Melon peels are increasingly produced as waste in food industries in Thailand. This study aimed to optimize pectin extraction conditions from melon peel for its prebiotic potential.

View Article and Find Full Text PDF

Immune-based Machine learning Prediction of Diagnosis and Illness State in Schizophrenia and Bipolar Disorder.

Brain Behav Immun

November 2024

Université Paris Est Créteil (UPEC), Inserm U955, IMRB Translational Neuropsychiatry Laboratory, AP-HP, Hôpitaux Universitaires H Mondor, DMU IMPACT, FHU ADAPT, Fondation FondaMental, Créteil, France.

Background: Schizophrenia and bipolar disorder frequently face significant delay in diagnosis, leading to being missed or misdiagnosed in early stages. Both disorders have also been associated with trait and state immune abnormalities. Recent machine learning-based studies have shown encouraging results using diagnostic biomarkers in predictive models, but few have focused on immune-based markers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!