Each neuron has 100-10000 connections (synapses) with other neural cells, therefore genome pathologies affecting a small proportion of brain cells are capable of causing dysfunction of the entire central nervous system (CNS). Recently, genome and chromosome instability has been uncovered in neurodegeneration (Alzheimer's disease, ataxia telangiectasia). Somatic tissue-specific mosaicism was observed in the brain of individuals with neuropsychiatric diseases including schizophrenia, autism, intellectual disability, and epilepsy. The study of genetic processes in neurons allows determination of a certain number of genetic pathways and candidate processes, modifications of which can cause impaired genome stability. Brain-specific somatic mutations generally occur at the earliest stages of development. Accordingly, genome variability and somatic mosaicism are expected to be mediated by cell cycle regulation, DNA repair, DNA replication, and programmed cell death in the brain. Endomitosis, endoreduplication, and abortive entrance to the cell cycle are also commonly observed in neurodegeneration. Brain-specific genome instability maybe a key element in the pathogenic cascade of neurodegeneration. Here we review the current state of knowledge concerning somatic genome variations in neurodegenerative and psychiatric diseases and analyze the causes and consequences of genomic instability in the CNS.

Download full-text PDF

Source
http://dx.doi.org/10.31857/S0026898421010158DOI Listing

Publication Analysis

Top Keywords

genome instability
8
cell cycle
8
genome
7
[causes consequences
4
consequences genome
4
instability
4
instability psychiatric
4
psychiatric neurodegenerative
4
neurodegenerative diseases]
4
diseases] neuron
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!