Multifunctional wearable heaters have attracted much attention owing to their efficient application in personal thermal management. Inspired by the polar bear's thermal management, a laminated fabric with enhanced photothermal conversion, mid-infrared reflection, thermal insulation, and electrical heating performance was developed in this work, which was made of CNT/cellulose aerogel layers, cotton fabrics, and copper nanowire (CuNW)-based conductive network (CNN) layers. The CNN layer made up of highly conductive CuNWs not only exhibits better conductivity to realize the Joule heating effect but also possesses a human mid-infrared reflection property. Moreover, the other side of the cotton fabric was laminated with CNT/cellulose aerogel, which enables the fabric to have a good photothermal conversion ability and thermal insulation performance. The temperature of the laminated fabric could reach to 70 °C within 80 s under 1.8 V; it requires more than 500 s to return to room temperature (28.7 °C). When the light intensity was adjusted to 1000 W/m, the temperature of the laminated fabric was about 74.0 °C after lighting for 280 s. Our work provides a new approach to improving the performance and energy-saving of personal thermal management fabrics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c23123 | DOI Listing |
ACS Appl Nano Mater
December 2024
Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.
The transfer of large-area, continuous, chemical vapor deposition (CVD)-grown graphene without introducing defects remains a challenge for fabricating graphene-based electronics. Polymer thin films are commonly used as supports for transferring graphene, but they typically require thermal annealing before transfer. However, little work has been done to thoroughly investigate how thermal annealing affects the polymer/graphene thin film when directly annealed on the growth substrate.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China. Electronic address:
Ammonia borane (NHBH, AB) is considered a promising chemical hydrogen storage material. The development of efficient, stable, and economical catalysts for AB hydrolysis is essential for realizing the hydrogen energy economy. In this study, a series of p-p heterojunction catalysts, labeled M (P/S/Cl)-CuCoO, were fabricated using the high-temperature vapor phase method to achieve anionic interface gradient doping.
View Article and Find Full Text PDFBiomimetics (Basel)
November 2024
Department of Dental Laboratory Science, College of Health Science, Catholic University of Pusan, 57 Oryundae-ro, Geumjeong-gu, Busan 46252, Republic of Korea.
DLP printing is a new method for producing zirconia laminates that ensure clinically acceptable gaps in the internal, marginal, and incisal regions. A typical model of a central maxillary incisor was prepped by a dentist and scanned. The laminate was designed using CAD software version 2023.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Shanghai Institute of Technology, School of Chemical and Environmental Engineering, CHINA.
Laminating a free-standing carbon electrode film onto perovskite film is a promising method for fabricating HTM (hole transport material)-free carbon electrode perovskite solar cells (c-PSCs), offering more flexibility by decoupling the processes of carbon electrode and perovskite layer formation. However, the power conversion efficiency (PCE) of laminated HTM-free c-PSCs (<16.5%) remains lower compared to c-PSCs with printed carbon pastes (>20%), primarily due to poor interfacial contact between the perovskite and carbon layers.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
December 2024
Center for Transport Technologies, Battery Technologies, AIT Austrian Institute of Technology GmbH, Giefinggasse 2, Vienna 1210, Austria.
In this work, a battery layup consisting of a poorly flammable ionic liquid electrolyte and a poly(vinylidene fluoride--hexafluoropropylene) (PVdF-HFP) thermoplastic has been developed along with composite anode and cathode electrodes. The developed gel electrolyte exhibits feasible ionic conductivity of about 1 mS/cm at 30 °C. State-of-the-art active electrode materials, i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!