Wound biofilms must be identified to target disruption and bacterial eradication but are challenging to detect with standard clinical assessment. This study tested whether bacterial fluorescence imaging could detect porphyrin-producing bacteria within a biofilm using well-established in vivo models. Mouse wounds were inoculated on Day 0 with planktonic bacteria (n = 39, porphyrin-producing and non-porphyrin-producing species, 10 colony forming units (CFU)/wound) or with polymicrobial biofilms (n = 16, 3 biofilms per mouse, each with 1:1:1 parts Staphylococcus aureus/Escherichia coli/Enterobacter cloacae, 10 CFU/biofilm) that were grown in vitro. Mouse wounds inoculated with biofilm underwent fluorescence imaging up to Day 4 or 5. Wounds were then excised and sent for microbiological analysis. Bacteria-matrix interaction was assessed with scanning electron microscopy (SEM) and histopathology. A total of 48 hours after inoculation with planktonic bacteria or biofilm, red fluorescence was readily detected in wounds; red fluorescence intensified up to Day 4. Red fluorescence from biofilms persisted in excised wound tissue post-wash. SEM and histopathology confirmed bacteria-matrix interaction. This pre-clinical study is the first to demonstrate the fluorescence detection of bacterial biofilm in vivo using a point-of-care wound imaging device. These findings have implications for clinicians targeting biofilm and may facilitate improved visualisation and removal of biofilms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8450799 | PMC |
http://dx.doi.org/10.1111/iwj.13564 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!