Chlamydia is the most commonly reported sexually transmitted bacterial infection, with 127 million notifications worldwide each year. Both males and females are susceptible to the pathological impacts on fertility that Chlamydia infections can induce. However, male chlamydial infections, particularly within the upper reproductive tract, including the testis, are not well characterized. In this study, using mouse testicular cell lines, we examined the impact of infection on testicular cell lineage transcriptomes and potential mechanisms for this impact. The somatic cell lineages exhibited significantly fragmented genomes during infection. Likely resulting from this, each of the Leydig, Sertoli and germ cell lineages experienced extensive transcriptional dysregulation, leading to significant changes in cellular biological pathways, including interferon and germ-Sertoli cell signalling. The cell lineages, as well as isolated spermatozoa from infected mice, also contained globally hypomethylated DNA. Cumulatively, the DNA damage and epigenetic-mediated transcriptional dysregulation observed within testicular cells during chlamydial infection could result in the production of spermatozoa with abnormal epigenomes, resulting in previously observed subfertility in infected animals and congenital defects in their offspring.

Download full-text PDF

Source
http://dx.doi.org/10.1111/aji.13400DOI Listing

Publication Analysis

Top Keywords

cell lineages
12
dna damage
8
testicular cells
8
testicular cell
8
transcriptional dysregulation
8
cell
6
infection
5
damage contributes
4
contributes transcriptional
4
transcriptional immunological
4

Similar Publications

Functional differences between rodent and human PD-1 linked to evolutionary divergence.

Sci Immunol

January 2025

Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.

Mechanistic understanding of the inhibitory immunoreceptor PD-1 is largely based on mouse models, but human and mouse PD-1 share only 59.6% amino acid identity. Here, we found that human PD-1 is more inhibitory than mouse PD-1, owing to stronger interactions with the ligands PD-L1 and PD-L2 and more efficient recruitment of the effector phosphatase Shp2.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) is highly polymorphic, and host mtDNA variation has been associated with altered cancer severity. To determine the basis of this mtDNA-cancer association, we analyzed conplastic mice with the C57BL/6J (B6) nucleus but two naturally occurring mtDNA lineages, and , where mitochondria generate more oxidative phosphorylation (OXPHOS)-derived reactive oxygen species (mROS). In a cardiac transplant model, Foxp3+ T regulatory (Treg) cells supported long-term allograft survival, whereas Treg cells failed to suppress host T effector (Teff) cells, leading to acute rejection.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a central nervous system degenerative disease with a stealthy onset and a progressive course characterized by memory loss, cognitive dysfunction, and abnormal psychological and behavioral symptoms. However, the pathogenesis of AD remains elusive. An increasing number of studies have shown that oligodendrocyte progenitor cells (OPCs) and oligodendroglial lineage cells (OLGs), especially OPCs and mature oligodendrocytes (OLGs), which are derived from OPCs, play important roles in the pathogenesis of AD.

View Article and Find Full Text PDF

Background: Genome-wide association studies (GWAS) in Alzheimer's disease (AD) are consistently discovering genetic variants linked to the risk of developing this neurodegenerative condition. However, the effect size of the shared associated loci varies across populations as well as each population can have unique associations. This phenomenon could be explained by ancestry-dependent changes in the genomic regulatory architecture (GRA) influencing the expression of these genes, similar to the effect of different local ancestry on the risk of AD in APOE4 carriers.

View Article and Find Full Text PDF

Swine influenza virus (SIV) is a highly contagious pathogen that poses significant economic challenges to the swine industry and carries zoonotic potential, underscoring the need for vigilant surveillance. In this study, we performed a comprehensive genetic and molecular analysis of H3N2 SIV isolates obtained from 372 swine samples collected in Shandong Province, China. Phylogenetic analysis revealed two distinct genotypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!