Background: Chloride channel 2 (CLCN2) was recently shown to affect tumor behavior. The present study examined the functions of CLCN2 in the regulation of genes that play a role in tumor progression, as well as its clinicopathological significance in esophageal squamous cell carcinoma (ESCC).
Methods: Knockdown experiments were conducted using CLCN2-small-interfering RNA, and changes in proliferation, survival, and cellular movement in human ESCC cell lines were investigated. A microarray analysis of gene expression profiles in CLCN2-depleted ESCC cells was conducted. Fifty-four primary ESCC samples were examined by immunohistochemistry (IHC).
Results: The strong expression of CLCN2 was detected in TE5 and KYSE70 cells. Downregulated expression of CLCN2 enhanced proliferation and decreased apoptosis, whereas its upregulation inhibited proliferation and increased apoptosis. The effects of lubiprostone, a CLCN2 activator, were also investigated. In lubiprostone-treated cells, proliferation was inhibited and apoptosis was increased. The microarray analysis demonstrated that interferon (IFN) signaling-related genes were downregulated in CLCN2-depleted cells. IHC showed the presence of CLCN2 in the cytoplasm and cell membranes of ESCC cells. The prognostic analysis revealed a relationship between weak CLCN2 expression and shorter overall survival.
Conclusions: The present results indicate that tumor progression is regulated by CLCN2 through its effects on IFN signaling. Furthermore, weak CLCN2 expression was associated with poorer outcomes in ESCC patients. The present study will contribute to a clearer understanding of the role of CLCN2 as a mediator of ESCC, as well as its use as a biomarker for this cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1245/s10434-021-09659-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!