Hydropathy plots are a crucial tool to guide experimental design, as they generate predictions of protein-membrane interactions and their bilayer topology. The predictions are based on experimentally determined hydrophobicity scales, which provide an estimate for the propensity and stability of these interactions. A significant improvement to the accuracy of hydropathy analyses was provided by the development of the popular Wimley-White interfacial and octanol hydrophobicity scales. These scales have been previously incorporated into the freely available MPEx (Membrane Protein Explorer) online application. Here, we introduce a substantial update to MPEx that allows for the consideration of electrostatic contributions to the bilayer partitioning free energy. This component originates from the Coulombic attraction or repulsion of charges between proteins and membranes. Its inclusion in hydropathy calculations increases the accuracy of hydropathy plot predictions and extends their use to more complex systems (i.e., anionic membranes). We illustrate the application of this analysis to studies on the membrane selectivity of antimicrobial peptides, the membrane partitioning of ion-channel gating modifiers, and the amyloid proteins α-synuclein and Tau, as well as pH-dependent bilayer interactions of diphtheria toxin and apoptotic inhibitor Bcl-xL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496208 | PMC |
http://dx.doi.org/10.1007/s00232-021-00170-5 | DOI Listing |
Sci Adv
January 2025
Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen 361005, P. R. China.
The utilization of low-dimensional perovskites (LDPs) as interlayers on three-dimensional (3D) perovskites has been regarded as an efficient strategy to enhance the performance of perovskite solar cells. Yet, the formation mechanism of LDPs and their impacts on the device performance remain elusive. Herein, we use dimensional engineering to facilitate the controllable growth of 1D and 2D structures on 3D perovskites.
View Article and Find Full Text PDFLangmuir
January 2025
Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
Coacervation is generally treated as a liquid-liquid phase separation process and is controlled mainly by thermodynamics. However, kinetics could make a dominant contribution, especially in systems containing multiple interactions. In this work, using peptides of (XXLY)SSSGSS to tune the charge density and the degree of hydrophobicity, as well as to introduce secondary structures, we evaluated the effect of kinetics on biphasic coacervates formed by peptides with single-stranded oligonucleotides and quaternized dextran at varying pH values.
View Article and Find Full Text PDFSoft Matter
January 2025
Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
Microfluidic chips are powerful tools for investigating numerous variables including chemical and physical parameters on protein aggregation. This study investigated the aggregation of bovine serum albumin (BSA) in two different systems: a vial-based static system and a microfluidic chip-based dynamic system in which BSA aggregation was induced successfully. BSA aggregation induced in a microfluidic chip on a timescale of seconds enabled a dynamic investigation of the forces driving the aggregation process.
View Article and Find Full Text PDFRSC Adv
January 2025
Graduate School of Environmental Symbiotic System Major, Nippon Institute of Technology 4-1 Gakuendai, Miyashiro Saitama 345-8501 Japan.
Coiled-coil protein carrier (CCPC) 140 is a rigid and anisotropically structured cationic coiled-coil artificial protein that has displayed up to a 1000 times higher level of cellular internalization activity than that of unstructured cell-penetrating peptides. Previous studies have demonstrated that CCPC 140's rigid and anisotropic structural properties and cationic surface properties are important for its superior cellular internalization activity. In this study, we investigated whether each physicochemical characteristic of CCPC 140 effectively contributed to activating the cellular internalization pathway.
View Article and Find Full Text PDFPorous structures offer several key advantages in energy harvesting, making them highly effective for enhancing the performance of piezoelectric and triboelectric nanogenerators (PENG and TENG). Their high surface area-to-volume ratio improves charge accumulation and electrostatic induction, which are critical for efficient energy conversion. Additionally, their lightweight and flexible nature allows for easy integration into wearable and flexible electronics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!