Background: There are many studies to investigate the effects of each interacting component of tumor-immune system interactions. In all these studies, the distinct effect of each component was investigated. As the interaction of tumor-immune system has feedback and is complex, the alternation of each component may affect other components indirectly.
Objective: Because of the complexities of tumor-immune system interactions, it is important to determine the mutual behavior of such components. We need a careful observation to extract these mutual interactions. Achieving these observations using experiments is costly and time-consuming.
Material And Methods: In this experimental and based on mathematical modeling study, to achieve these observations, we presented a fuzzy structured agent-based model of tumor-immune system interactions. In this study, we consider the confronting of the effector cells of the adaptive immune system in the presence of the cytokines of interleukin-2 (IL-2) and transforming growth factor-beta (TGF-β) as a fuzzy structured model. Using the experimental data of murine models of B16F10 cell line of melanoma cancer cells, we optimized the parameters of the model.
Results: Using the output of this model, we determined the rules which could occur. As we optimized the parameters of the model using escape state of the tumor and then the rules which we obtained, are the rules of tumor escape.
Conclusion: The results showed that using fuzzy structured agent-based model, we are able to show different output of the tumor-immune system interactions, which are caused by the stochastic behavior of each cell. But different output of the model just follow the predetermined behavior, and using this behavior, we can achieve the rules of interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7859377 | PMC |
http://dx.doi.org/10.31661/jbpe.v0i0.489 | DOI Listing |
Trends Cancer
January 2025
Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA. Electronic address:
Sensory nerves form a crucial component of the tumor microenvironment (TME) that relays vital information to the central nervous system and modulates tumor progression via immunosurveillance. Afferent activity processed by the brain can sensitize brain circuitry and influence host behaviors. Peripheral sensory signaling (e.
View Article and Find Full Text PDFActa Biomater
January 2025
School of Materials and Energy, Southwest University, Chongqing 400715, China; Yibin Academy of Southwest University, Yibin 644005, China. Electronic address:
Glioblastoma (GBM) is a primary central nervous system neoplasm, characterized by a grim prognosis and low survival rates. This unfavorable therapeutic outcome is partially attributed to the inadequate immune infiltration and an immunosuppressive microenvironment, which compromises the effectiveness of conventional radiotherapy and chemotherapy. To this end, precise modulation of cellular dynamics in the immune system has emerged as a promising approach for therapeutic intervention.
View Article and Find Full Text PDFCancer Lett
January 2025
Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China, 250117. Electronic address:
Successful immunotherapy requires systemic activation of the immune system. Radio-immunotherapy has a synergistic effect, enhancing this activation, but still faces many challenges, requiring methods to further improve its efficacy. Interleukin 15 (IL-15) is considered a potential therapeutic agent because of its broad immunoregulatory activity.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
Recent advances in oncology research have highlighted the promising synergy between low-dose radiation therapy (LDRT) and immunotherapies, with growing evidence highlighting the unique benefits of the combination. LDRT has emerged as a potent tool for stimulating the immune system, triggering systemic antitumor effects by remodeling the tumor microenvironment. Notably, LDRT demonstrates remarkable efficacy even in challenging metastatic sites such as the liver (uveal) and brain (cutaneous), particularly in advanced melanoma stages.
View Article and Find Full Text PDFProtein Expr Purif
January 2025
Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital of Chinese Academy of Medical Sciences, Langfang Campus, Langfang, 065001, China. Electronic address:
As an important member of the Siglec family, SIGLEC-15 plays an important role in osteoclast differentiation, bone remodeling, and tumor immune evasion. In the tumor microenvironment, SIGLEC-15 functions independently of the B7-H1/PD-1 pathway. In this study, the SIGLEC-15 fusion protein (SIGLEC-15-Fc) was successfully expressed and purified using a eukaryotic expression system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!