g:Profiler ( https://biit.cs.ut.ee/gprofiler) is a widely used gene list functional profiling and namespace conversion toolset that has been contributing to reproducible biological data analysis already since 2007. Here we introduce the accompanying R package, , developed to facilitate programmatic access to g:Profiler computations and databases via REST API. The package provides an easy-to-use functionality that enables researchers to incorporate functional enrichment analysis into automated analysis pipelines written in R. The package also implements interactive visualisation methods to help to interpret the enrichment results and to illustrate them for publications. In addition, gives access to the versatile gene/protein identifier conversion functionality in g:Profiler enabling to map between hundreds of different identifier types or orthologous species. The package is freely available at the CRAN repository.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7859841PMC
http://dx.doi.org/10.12688/f1000research.24956.2DOI Listing

Publication Analysis

Top Keywords

gene list
8
list functional
8
functional enrichment
8
enrichment analysis
8
namespace conversion
8
conversion toolset
8
gprofiler2 package
4
package gene
4
analysis
4
analysis namespace
4

Similar Publications

DisGeNet: a disease-centric interaction database among diseases and various associated genes.

Database (Oxford)

January 2025

School of Computer Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi'an, Shaanxi 710126, China.

The pathogenesis of complex diseases is intricately linked to various genes and network medicine has enhanced understanding of diseases. However, most network-based approaches ignore interactions mediated by noncoding RNAs (ncRNAs) and most databases only focus on the association between genes and diseases. Based on the mentioned questions, we have developed DisGeNet, a database focuses not only on the disease-associated genes but also on the interactions among genes.

View Article and Find Full Text PDF

Soybean has outstanding nutritional and medicinal value because of its abundant protein, oil, and flavonoid contents. This crop has rich seed coat colors, such as yellow, green, black, brown, and red, as well as bicolor variants. However, there are limited reports on the synthesis of flavonoids in the soybean seed coats of different colors.

View Article and Find Full Text PDF

Stinging nettles () have a long history of association with human civilization, having been used as a source of textile fibers, food and medicine. Here, we present a chromosome-level, phased genome assembly for a diploid female clone of from Romania. Using a combination of PacBio HiFi, Oxford Nanopore, and Illumina sequencing, as well as Hi-C long-range interaction data (using a novel Hi-C protocol presented here), we assembled two haplotypes of 574.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) poses significant risks for solid organ transplant recipients, who have atypical but poorly characterized immune responses to infection. We aim to understand the host immunologic and microbial features of COVID-19 in transplant recipients by leveraging a prospective multicenter cohort of 86 transplant recipients age- and sex-matched with 172 non-transplant controls. We find that transplant recipients have higher nasal SARS-CoV-2 viral abundance and impaired viral clearance, and lower anti-spike IgG levels.

View Article and Find Full Text PDF

Oligogenic risk score for Gilles de la Tourette syndrome reveals a genetic continuum of tic disorders.

J Appl Genet

January 2025

Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland.

Gilles de la Tourette syndrome (GTS) and other tic disorders (TDs) have a substantial genetic component with their heritability estimated at between 60 and 80%. Here we propose an oligogenic risk score of TDs using whole-genome sequencing (WGS) data from a group of Polish GTS patients, their families, and control samples (n = 278). In this study, we first reviewed the literature to obtain a preliminary list of 84 GTS/TD candidate genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!