Bile acid synthesis is thought to be regulated by a negative feedback mechanism which is presumably dependent upon the flux of bile acids in the enterohepatic circulation. To characterize further the role of bile acids in regulation of bile acid synthesis, we have administered pure taurine or glycine conjugates of ursodeoxycholic acid or cholic acid to chronic bile fistula rats by continuous intraduodenal infusion, thus simulating restoration of the enterohepatic circulation. The effects of these bile salt infusions on bile acid synthesis, biliary cholesterol and phospholipid secretion and on the activities of the hepatic microsomal enzymes cholesterol 7 alpha-hydroxylase and HMG-CoA reductase were evaluated. Because the rate of biliary bile salt secretion in rats with intact exteriorized enterohepatic circulation averaged 27.1 +/- 1.4 mumoles per 100 gm rat per hr, infusion rates for bile fistula studies were chosen to match (24 to 36 mumoles per 100 gm rat per hr) or exceed (48 mumoles per 100 gm rat per hr) this physiological flux. Infusion of tauroursodeoxycholic acid for 48 hr at 24 and 48 mumoles per 100 gm rat per hr failed to suppress cholic acid synthesis. Bile flow and biliary cholesterol and phospholipid secretion exhibited small, dose-dependent increases with tauroursodeoxycholic acid infusions. No suppression of cholesterol 7 alpha-hydroxylase or HMG-CoA reductase activity was observed. By contrast, taurocholic acid inhibited synthesis of chenodeoxycholate and its metabolites alpha- and beta-muricholate by 10% (NS), 66% (p less than 0.05) and 75% (p less than 0.05) at infusion rates of 24, 36 and 48 mumoles per 100 gm rat per hr, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/hep.1840080228 | DOI Listing |
Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.
View Article and Find Full Text PDFBackground: Abnormal glucose metabolism in AD brains correlates with cognitive deficits. The glucose changes are consistent with brain thiamine (vitamin B1) deficiency. In animals, thiamine deficiency causes multiple AD-like changes including memory loss, neuron loss, brain inflammation, enhanced phosphorylation of tau, exaggerated plaque formation and elevated advanced glycation end products (AGE).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Georgia, College of Pharmacy, Athens, GA, USA.
Background: Lipids are key modulators in the pathogenesis of Alzheimer's disease (AD). Dysregulation of lipid homeostasis may disrupt the blood brain barrier, alter myelination, disturb cellular signaling and cause abnormal processing of the amyloid precursor protein. The purpose of this scoping review was to evaluate fatty acid supplementation in patients with AD.
View Article and Find Full Text PDFGut Microbes
December 2025
MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
The gut microbiota plays a pivotal role in anxiety regulation through pathways involving neurotransmitter production, immune signaling, and metabolic interactions. Among these, gut-derived serotonin (5-hydroxytryptamine, 5-HT), synthesized from tryptophan metabolism, has been identified as a key mediator. However, it remains unclear whether specific microbial factors regulate tryptophan metabolism to influence 5-HT production and anxiety regulation.
View Article and Find Full Text PDFArch Physiol Biochem
January 2025
Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway.
Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) plays a crucial role in regulation of metabolic homeostasis. To understand the role of the catalytic α2 subunit of AMPK in skeletal muscle energy metabolism, myotube cultures were established from and mice. Myotubes from mice had lower basal oleic acid and glucose oxidation compared to myotubes from mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!