Background: In fish, minimally invasive blood sampling is widely used to monitor physiological stress with blood plasma biomarkers. As fish blood cells are nucleated, they might be a source a potential new markers derived from 'omics technologies. We modified the epiGBS (epiGenotyping By Sequencing) technique to explore changes in genome-wide cytosine methylation in the red blood cells (RBCs) of challenged European sea bass (Dicentrarchus labrax), a species widely studied in both natural and farmed environments.

Results: We retrieved 501,108,033 sequencing reads after trimming, with a mean mapping efficiency of 73.0% (unique best hits). Minor changes in RBC methylome appeared to manifest after the challenge test and a family-effect was detected. Only fifty-seven differentially methylated cytosines (DMCs) close to 51 distinct genes distributed on 17 of 24 linkage groups (LGs) were detected between RBCs of pre- and post-challenge individuals. Thirty-seven of these genes were previously reported as differentially expressed in the brain of zebrafish, most of them involved in stress coping differences. While further investigation remains necessary, few DMC-related genes associated to the Brain Derived Neurotrophic Factor, a protein that favors stress adaptation and fear memory, appear relevant to integrate a centrally produced stress response in RBCs.

Conclusion: Our modified epiGBS protocol was powerful to analyze patterns of cytosine methylation in RBCs of D. labrax and to evaluate the impact of a challenge using minimally invasive blood samples. This study is the first approximation to identify epigenetic biomarkers of exposure to stress in fish.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7871408PMC
http://dx.doi.org/10.1186/s12864-021-07420-9DOI Listing

Publication Analysis

Top Keywords

blood cells
12
red blood
8
challenge test
8
european sea
8
sea bass
8
bass dicentrarchus
8
dicentrarchus labrax
8
minimally invasive
8
invasive blood
8
modified epigbs
8

Similar Publications

Tumor organoids have emerged as powerful tools for in vitro cancer research due to their ability to retain the structural and genetic characteristics of tumors. Nevertheless, the absence of a complete tumor microenvironment (TME) limits the broader application of organoid models in immunological studies. Given the critical role of immune cells in tumor initiation and progression, the co-culture model of organoids and peripheral blood mononuclear cells (PBMCs) may provide an effective platform for simulating the interactions between immune and tumor cells in vitro.

View Article and Find Full Text PDF

Background: Coronary artery disease (CAD) has become a dominant economic and health burden worldwide, and the role of autophagy in CAD requires further clarification. In this study, we comprehensively revealed the association between autophagy flux and CAD from multiple hierarchies. We explored autophagy-associated long noncoding RNA (lncRNA) and the mechanisms underlying oxidative stress-induced human coronary artery endothelial cells (HCAECs) injury.

View Article and Find Full Text PDF

The clinical use of cancer vaccines is hampered by the low magnitude of induced T-cell responses and the need for repetitive antigen stimulation. Here, we demonstrate that liposomal formulations with incorporated STING agonists are optimally suited to deliver peptide antigens to dendritic cells in vivo and to activate dendritic cells in secondary lymphoid organs. One week after liposomal priming, systemic administration of peptides and a costimulatory agonistic CD40 antibody enables ultrarapid expansion of T cells, resulting in massive expansion of tumor-specific T cells in the peripheral blood two weeks after priming.

View Article and Find Full Text PDF

Diabetes is an incurable, chronic disease that can lead to many complications, including angiopathy, peripheral neuropathy, and erectile dysfunction (ED). The angiopoietin-Tie2 signaling pathway plays a critical role in blood vessel development, formation, remodeling, and peripheral nerve regeneration. Therefore, strategies for activating the Tie2 signaling pathway have been developed as potential therapies for neurovascular diseases.

View Article and Find Full Text PDF

Power-free plasma separation based on negative magnetophoresis for rapid biochemical analysis.

Microsyst Nanoeng

December 2024

Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.

We present a versatile platform for label-free magnetic separation of plasma, tailored to accommodate diverse environments. This innovative device utilizes an advanced long-short alternating double Halbach magnetic array, specifically engineered for optimal magnetic separation. The array's adaptability allows for seamless integration with separation channels of varying sizes, enabling static separation of whole blood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!