AI Article Synopsis

  • The paper discusses the phase diagram of the Sn-As-Ge system and how it was created using X-ray powder diffraction and differential thermal analysis.
  • In the diagram, researchers identified multiple equilibria, including four-phase peritectic conditions involving different phases of tin, arsenic, and germanium.
  • The study also highlights important invariant peritectic equilibria and the implications of these findings for understanding the phase relationships within the Sn-As-Ge system.

Article Abstract

The paper presents the phase diagram of the Sn-As-Ge system. The diagram of polythermal Sn-GeAs section was constructed using the results of X-ray powder diffraction analysis and differential thermal analysis. We found that in a concentration interval with arsenic content of less than 50 mol%, four-phase peritectic equilibria L + SnAs ∆ GeAs + Sn4As3 (834 ∆) and L + GeAs ∆ Ge + Sn4As3 (821 ∆) are present. When the temperature is close to the melting point of pure tin, non-variant equilibrium with tin, germanium and Sn4As3 is implemented as well. The study of Sn0.39As0.61-Ge0.28As0.72, SnAs-Ge0.4As0.6 and SnAs-GeAs2 sections and elaboration of the type of the SnAs-GeAs phase diagram demonstrated that polythermal sections SnAs-GeAs and SnAs-GeAs2 can perform phase subsolidus demarcation of the phase diagram of the Sn-As-Ge system. There are also invariant peritectic equilibria L + GeAs2 ∆ GeAs + SnAs (840 ∆) and L + As ∆ SnAs + GeAs2 (843 ∆) in the system.

Download full-text PDF

Source

Publication Analysis

Top Keywords

phase diagram
16
diagram sn-as-ge
12
sn-as-ge system
12
∆ geas
12
peritectic equilibria
8
8
phase
5
system
4
system paper
4
paper presents
4

Similar Publications

Background: With the advent of anti-amyloid therapies, identifying those with underlying amyloid burdens and detecting subsequent clinical effects of this AD pathology is critical. The DETECT-AD study (ClinicalTrials.gov, NCT05385913) is a simulated secondary prevention anti-amyloid clinical trial testing digital biomarkers as more sensitive and meaningful primary outcome measures.

View Article and Find Full Text PDF

The recent discovery of ferroelectric nematic liquid crystalline phases marks a major breakthrough in soft matter research. An intermediate phase, often observed between the nonpolar and the ferroelectric nematic phase, shows a distinct antiferroelectric response to electric fields. However, its structure and formation mechanisms remain debated, with flexoelectric and electrostatics effects proposed as competing mechanisms.

View Article and Find Full Text PDF

Insulin amyloid morphology is encoded in H-bonds and electrostatics interactions ruling protein phase separation.

J Colloid Interface Sci

December 2024

Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark. Electronic address:

Ion-protein interactions regulate biological processes and are the basis of key strategies of modulating protein phase diagrams and stability in drug development. Here, we report the mechanisms by which H-bonds and electrostatic interactions in ion-protein systems determine phase separation and amyloid formation. Using microscopy, small-angle X-ray scattering, circular dichroism and atomistic molecular dynamics (MD) simulations, we found that anions specifically interacting with insulin induced phase separation by neutralising the protein charge and forming H-bond bridges between insulin molecules.

View Article and Find Full Text PDF

High dielectric constants with less dielectric loss composites is highly demandable for technological advancements across various fields, including energy storage, sensing, and telecommunications. Their significance lies in their ability to enhance the performance and efficiency of a wide range of devices and systems. In this work, the dielectric performance of graphene oxide (GO) reinforced plasticized starch (PS) nanocomposites (PS/GO) for different concentrations of GO nanofiller was studied.

View Article and Find Full Text PDF

Inclusion complexation of the sunscreen ingredient avobenzone (AVB) with β-cyclodextrin (β-CD) was investigated to improve its aqueous solubility and photostability; another ultraviolet (UV) filter, oxybenzone (OXB), and the phytochemical antioxidant curcumin (CUR) served as a comparison. In this study, the 1-octanol/water partition coefficients, acid dissociation constants, phase-solubility diagrams with β-CD, and ultraviolet-visible (UV-vis) spectral changes induced by UVA1 (365 nm) irradiation were evaluated. β-CD at concentrations 50-100 times that of AVB most effectively protected the photostability of AVB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!