Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Plate-like Bi4Ti3O12 particles were synthesized using a one-step, molten-salt method from Bi2O3 and TiO2 nanopowders at 800 °C. The reaction parameters that affect the crystal structure and morphology were identified and systematically investigated. The differences between various Bi4Ti3O12 plate-like particles were examined in terms of the ferroelectric-to-paraelectric phase transition and the photocatalytic activity for the degradation of Rhodamine B under UV-Alight irradiation. The results encouraged us to conduct further testing of the as-prepared Bi4Ti3O12 plate-like particles as templates for the preparation of plate-like SrTiO3 perovskite particles using a topochemical conversion under hydrothermal conditions. The characteristics of the Bi4Ti3O12 plates and the reaction parameters for which the SrTiO3 preserved the shape of the initial Bi4Ti3O12 template particles were determined.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!