As a natural biological adsorbent, shell powder is inexpensive, highly efficient, and does not leave any chemical residue; thus, it can be used to remove contaminants from water. In this study, we used mussel shells as a raw material to prepare an adsorbent. Scanning electron microscopy was used to observe the surface morphology of the mussel shell powder before and after calcination, and X-ray diffraction measurements, Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller measurements were performed to analyze the structure and composition of calcined mussel shell powder. Characterization of the shell powder before and after calcination revealed a change from calcium carbonate to calcium oxide, as well as the formation of a surface porous structure. Using Pb(II) as a representative contaminant, various factors affecting the adsorption were explored, and the adsorption mechanism was analyzed. It was found that the adsorption is consistent with the Freundlich adsorption isotherm and the pseudo second-order model. The calcined mussel shell powder exhibits excellent adsorption for Pb(II), with an adsorption capacity reaching 102.04 mg/g.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915593 | PMC |
http://dx.doi.org/10.3390/ma14040741 | DOI Listing |
Biosens Bioelectron
January 2025
Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China. Electronic address:
The development of advanced optical probes for point-of-care testing holds great importance in the field of diagnostic technologies. This study focused on the synthesis of a probe featuring both fluorescent and photothermal responses with single excitation wavelength, which was achieved through the combination of oxidized camellia oleifera shell powder (OC) and Prussian blue nanoparticles (PBNPs). Notably, OC derived from the direct processing of raw material showed fluorescent and phosphorescent emissions simultaneously, and the positions of the two peaks overlapped with the absorbance range of PBNPs, making the fluorescent and phosphorescent emissions of OC effectively quenched by PBNPs.
View Article and Find Full Text PDFFoods
December 2024
Department of Chemical Engineering, Faculty of Chemistry, Universidad de Sevilla, 41012 Seville, Spain.
Eco-friendly, bioactive and edible films from renewable resources are increasingly regarded as viable replacements for petroleum-based packaging. This study investigates the application of macroalgae powder (ULP) as an active additive in crab () chitosan-based films for natural food packaging. Films with ULP concentrations of 0.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China.
This work investigated the mechanical and catalytic degradation properties of FeMnCoCr-based high-entropy alloys (HEAs) with diverse compositions and porous structures fabricated via selective laser melting (SLM) additive manufacturing for wastewater treatment applications. The effects of Mn content (0, 30 at%, and 50 at%) and topological structures (gyroid, diamond, and sea urchin-inspired shell) on the compression properties and catalytic efficiency of the FeMnCoCr HEAs were discussed. The results indicated that an increase in the Mn content led to a phase structure transition that optimized mechanical properties and catalytic activities.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117580, Singapore.
Hydrate-based carbon capture and storage (HBCS) is a sustainable and promising approach to combating global warming by utilizing water, which is a ubiquitous resource. Here, we report a comprehensive study of CO hydrate formation in dry water (DW), a water-in-air dispersion confined in silica particles, for improving the kinetics of hydrate growth. Utilizing a combination of a home-built high-pressure reactor, in situ Raman spectroscopy, and powder X-ray diffraction (PXRD), we elucidate the crystal structure, growth dynamics, and morphology of CO hydrates formed in DW, with and without the kinetic hydrate promoter, l-tryptophan.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Green Technology for Sustainability, Nanhua University, Chiayi 62248, Taiwan.
The construction industry contributes significantly to global carbon emissions, accounting for approximately 27% of total emissions. With the increasing demand for concrete, there is a growing need to explore alternative materials that can reduce environmental impact. This study investigates the potential of using oyster shell powder, a waste material, as a partial replacement for fine aggregates in concrete.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!