Livestock production systems generate nuisance odor and gaseous emissions affecting local communities and regional air quality. There are also concerns about the occupational health and safety of farmworkers. Proven mitigation technologies that are consistent with the socio-economic challenges of animal farming are needed. We have been scaling up the photocatalytic treatment of emissions from lab-scale, aiming at farm-scale readiness. In this paper, we present the design, testing, and commissioning of a mobile laboratory for on-farm research and demonstration of performance in simulated farm conditions before testing to the farm. The mobile lab is capable of treating up to 1.2 m/s of air with titanium dioxide, TiO-based photocatalysis, and adjustable UV-A dose based on LED lamps. We summarize the main technical requirements, constraints, approach, and performance metrics for a mobile laboratory, such as the effectiveness (measured as the percent reduction) and cost of photocatalytic treatment of air. The commissioning of all systems with standard gases resulted in ~9% and 34% reduction of ammonia (NH) and butan-1-ol, respectively. We demonstrated the percent reduction of standard gases increased with increased light intensity and treatment time. These results show that the mobile laboratory was ready for on-farm deployment and evaluating the effectiveness of UV treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915192PMC
http://dx.doi.org/10.3390/ijerph18041523DOI Listing

Publication Analysis

Top Keywords

mobile laboratory
16
design testing
8
gaseous emissions
8
photocatalytic treatment
8
percent reduction
8
standard gases
8
mobile
5
testing mobile
4
laboratory
4
laboratory mitigation
4

Similar Publications

Background: Despite the increasing popularity of electronic devices, the longitudinal effects of daily prolonged electronic device usage on brain health and the aging process remain unclear.

Objective: The aim of this study was to investigate the impact of the daily use of mobile phones/computers on the brain structure and the risk of neurodegenerative diseases.

Methods: We used data from the UK Biobank, a longitudinal population-based cohort study, to analyze the impact of mobile phone use duration, weekly usage time, and playing computer games on the future brain structure and the future risk of various neurodegenerative diseases, including all-cause dementia (ACD), Alzheimer disease (AD), vascular dementia (VD), all-cause parkinsonism (ACP), and Parkinson disease (PD).

View Article and Find Full Text PDF

Developing damping materials that are both optically transparent and mechanically robust, while offering broad frequency damping capacity, is a significant challenge─particularly for devices that require protection without compromising visual clarity. Conventional methods often either fail to maintain transparency or involve complex designs that are difficult to implement. Here, we present an ionogel system that integrates a physically cross-linked elastic copolymer network with a viscous ionic liquid.

View Article and Find Full Text PDF

A photodetector for red and green with balanced negative and positive photocurrent for imaging is realized.

Sci Rep

January 2025

Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, People's Republic of China.

A dual-polarity, photovoltaic photodetector for red-green dual-wavelength detection is demonstrated, operating in the self-powered mode. It is based on a core-shell n-InGaN nanowire/p-CuO heterostructure with inner upward energy band bending and near surface downward energy band bending. This produces negative photocurrent for red light illumination and positive photocurrent for green light illumination.

View Article and Find Full Text PDF

Introduction: The escalating resistance of microorganisms to antimicrobials poses a significant public health threat. Strategies that use biomarkers to guide antimicrobial therapy-most notably Procalcitonin (PCT) and C-reactive protein (CRP)-show promise in safely reducing patient antibiotic exposure. While CRP is less studied, it offers advantages such as lower cost and broader availability compared with PCT.

View Article and Find Full Text PDF

Utilizing 4-Sulfonylcalix[4]arene as a Selective Mobile Phase Additive for the Capture of Methylated Peptides.

Anal Chem

January 2025

Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road, Shanghai 200237, P. R. China.

Protein methylation has attracted increasing attention due to its significant regulatory roles in various biological processes. However, the diversity of methylation forms, subtle differences between methylated and nonmodified sites, and their ultralow abundances pose substantial challenges for capturing and isolating methylated peptides from biological samples. Herein, we develop a chromatographic method that utilizes 4-sulfonylcalix[4]arene (SC4A) as a mobile phase additive and Click-Maltose as the stationary phase to separate methylated/nonmethylated peptides through the adsorption of the SC4A-(Me3) complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!