Polyamide-based nanocomposites containing graphene platelets decorated with poly(acrylamide) brushes were prepared and characterized. The brushes were grafted from the surface of graphene oxide (GO), a thermally conductive additive, using atom transfer radical polymerization, which led to the formation of the platelets coated with covalently tethered polymer layers (GO_PAAM), accounting for ca. 31% of the total mass. Polyamide-6 (PA6) nanocomposites containing 1% of GO_PAAM were formed by extrusion followed by injection molding. The thermal conductivity of the nanocomposite was 54% higher than that of PA6 even for such a low content of GO. The result was assigned to strong interfacial interactions between the brushes and PA6 matrix related to hydrogen bonding. Control nanocomposites containing similarly prepared GO decorated with other polymer brushes that are not able to form hydrogen bonds with PA6 revealed no enhancement of the conductivity. Importantly, the nanocomposite containing GO_PAAM also demonstrated larger tensile strength without deteriorating the elongation at break value, which was significantly decreased for the other coated platelets. The proposed approach enhances the interfacial interactions thanks to the covalent tethering of dense polymer brushes on 2D fillers and may be used to improve thermal properties of other polymer-based nanocomposites with simultaneous enhancement of their mechanical properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7914667 | PMC |
http://dx.doi.org/10.3390/ma14040751 | DOI Listing |
Adv Mater
January 2025
Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
Polymer-brush-grafted nanoparticles (PGNPs) that can be covalently crosslinked post-processing enable the fabrication of mechanically robust and chemically stable polymer nanocomposites with high inorganic filler content. Modifying PGNP brushes to append UV-activated crosslinkers along the polymer chains would permit a modular crosslinking strategy applicable to a diverse range of nanocomposite compositions. Further, light-activated crosslinking reactions enable spatial control of crosslink density to program intentionally inhomogeneous mechanical responses.
View Article and Find Full Text PDFNano Lett
January 2025
School of Nanoscience and Materials Engineering, Henan University, Zhengzhou, Henan 450046, China.
Spray cooling, which dissipates heat through droplet evaporation, is an efficient cooling method. Using seawater instead of freshwater in spraying is appealing given the intensifying global water crisis. However, seawater-based cooling suffers from salt accumulation on hot surfaces.
View Article and Find Full Text PDFSci Rep
January 2025
Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Birkat Al Mauz, Nizwa, Sultanate of Oman.
In this research, with the Green Chemistry approach, to load more sulfonic acid active sites on catalyst surfaces, a nanocomposite material based on core-shell magnetite coated with vinyl silane and a sulfonated polymeric brush-like structure is designed and synthesized as a new class of efficient solid acid catalysts, referred to as FeO@VS-APS brush solid acid. The synthesized catalyst was comprehensively characterized by a range of instrumental techniques, including XRD, SEM, TEM, FT-IR, EDX, TGA, and VSM. The activity of the catalyst was evaluated in Biginelli, Strecker, and esterification reactions.
View Article and Find Full Text PDFBraz Oral Res
January 2025
Pontifícia Universidade Católica do Rio Grande do Sul - PUC-RS, School of Health and Life Sciences, Department of Pediatric Dentistry, Porto Alegre, RS, Brazil.
The emergence of toothpastes containing different abrasive and whitening substances has been a constant concern among dental professionals. The aim of the present study was to perform an in vitro assessment of the surface topography of nanoparticle composite resins subjected to simulated brushing with dentifrices. Test samples were prepared with Filtek Universal (3M ESPE), Filtek Bulkfill (3M ESPE) and Z350 (3M ESPE), with 24 samples per resin.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill 27599, United States.
Architecturally hindered crystallization of bottlebrush graft copolymers offers a reaction- and solvent-free pathway for creating injectable elastomers with tissue-mimetic softness. Currently, injectable materials involve solvents and chemical reactions, leading to uncontrolled swelling, leaching of unreacted moieties, and side reactions with tissue. To address this issue, bottlebrush copolymers with a poly(ethylene glycol) (PEG) amorphous block and crystallizable poly(lactic acid) (PLA) grafted chains (A--B) were synthesized, with grafted chains of controlled length arranged along the backbone at controlled spacing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!