AI Article Synopsis

  • Intracellular calcium dynamics are crucial for cellular functions and are influenced by biochemical and biomechanical signals in a spatio-temporal context, but the exact regulation mechanisms remain unclear.
  • This study uses a microfluidic platform to simulate and analyze the effects of varying ATP and shear stress on calcium responses, demonstrating the system's ability to create distinct stimuli combinations.
  • The research identifies two primary responses in calcium dynamics—unimodal and oscillatory—depending on the characteristics of the spatio-temporal stimuli, highlighting potential applications in directing cell activities and understanding diseases.

Article Abstract

Intracellular calcium dynamics play essential roles in the proper functioning of cellular activities. It is a well known important chemosensing and mechanosensing process regulated by the spatio-temporal microenvironment. Nevertheless, how spatio-temporal biochemical and biomechanical stimuli affect calcium dynamics is not fully understood and the underlying regulation mechanism remains missing. Herein, based on a developed microfluidic generator of biochemical and biomechanical signals, we theoretically analyzed the generation of spatio-temporal ATP and shear stress signals within the microfluidic platform and investigated the effect of spatial combination of ATP and shear stress stimuli on the intracellular calcium dynamics. The simulation results demonstrate the capacity and flexibility of the microfluidic system in generating spatio-temporal ATP and shear stress. Along the transverse direction of the microchannel, dynamic ATP signals of distinct amplitudes coupled with identical shear stress are created, which induce the spatio-temporal diversity in calcium responses. Interestingly, to the multiple combinations of stimuli, the intracellular calcium dynamics reveal two main modes: unimodal and oscillatory modes, showing significant dependence on the features of the spatio-temporal ATP and shear stress stimuli. The present study provides essential information for controlling calcium dynamics by regulating spatio-temporal biochemical and biomechanical stimuli, which shows the potential in directing cellular activities and understanding the occurrence and development of disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7914997PMC
http://dx.doi.org/10.3390/mi12020161DOI Listing

Publication Analysis

Top Keywords

shear stress
24
atp shear
20
calcium dynamics
20
spatio-temporal atp
16
intracellular calcium
12
biochemical biomechanical
12
calcium responses
8
microfluidic generator
8
spatio-temporal
8
stress signals
8

Similar Publications

Metastable state preceding shear zone instability: Implications for earthquake-accelerated landslides and dynamic triggering.

Proc Natl Acad Sci U S A

January 2025

Institut Langevin, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Université Paris Sciences & Lettres, CNRS, Paris 7587, France.

Understanding the dynamic response of granular shear zones under cyclic loading is fundamental to elucidating the mechanisms triggering earthquake-induced landslides, with implications for broader fields such as seismology and granular physics. Existing prediction methods struggle to accurately predict many experimental and in situ landslide observations due to inadequate consideration of the underlying physical mechanisms. The mechanisms that influence landslide dynamic triggering, a transition from static (or extremely slow creeping) to rapid runout, remain elusive.

View Article and Find Full Text PDF

Excavation of underground engineering structures involving deeply buried water-rich soft rocks is generally carried out using the artificial freezing method. A series of undrained uniaxial and triaxial shear and creep tests were conducted on soft rocks under different confining pressures (0, 0.2, 0.

View Article and Find Full Text PDF

Shear Strength of Adhesives Based on Solvent Type, Aged, and LED-cured with Different Wavelengths: An Study.

J Contemp Dent Pract

September 2024

Department of Academic, Faculty of Dentistry, Universidad Nacional Federico Villarreal, Lima, Peru, ORCID: https://orcid.org/0000-0002-0594-5834.

Objective: To evaluate the shear strength of adhesives based on the type of solvent (ethanol and acetone), aged and light-cured using light-emitting diode (LED) units with different wavelengths. Polywave and monowave LED units were employed for this study.

Materials And Methods: Ninety bovine tooth samples were analyzed using OptiBond Universal adhesive (acetone) and single bond universal adhesive (ethanol).

View Article and Find Full Text PDF

Aim: This study evaluates long-term shear bond strength (SBS) and enamel micro cracks (MCs) healing after using adhesive pre-coated brackets (APC).

Materials And Methods: A total of eighty extracted human premolar teeth were randomly divided into four experimental groups ( = 20 per group): Control group: Teeth underwent indentation but no bracket bonding; group II : Teeth were subjected to indentation without exposure to thermocycling; group III: Teeth experienced both indentation and thermocycling; group IV: No indentation was applied to the teeth; groups III and IV were further divided into two subgroups to simulate different clinical timelines: Subgroup A (n = 10): Teeth underwent 5,000 thermocycles, equivalent to six months of clinical use. Subgroup B (n = 10): Teeth were subjected to 10,000 thermocycles, representing 12 months of use.

View Article and Find Full Text PDF

Linking the macroscopic flow properties and nanoscopic structure is a fundamental challenge to understanding, predicting, and designing disordered soft materials. Under small stresses, these materials are soft solids, while larger loads can lead to yielding and the acquisition of plastic strain, which adds complexity to the task. In this work, we connect the transient structure and rheological memory of a colloidal gel under cyclic shearing across a range of amplitudes a generalized memory function using rheo-X-ray photon correlation spectroscopy (rheo-XPCS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!