https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=33562234&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 335622342021042720210427
1424-82202142021Feb07Sensors (Basel, Switzerland)Sensors (Basel)Reliability of Bi-Axial Ankle Stiffness Measurement in Older Adults.116210.3390/s21041162This study involves measurements of bi-axial ankle stiffness in older adults, where the ankle joint is passively moved along the talocrural and subtalar joints using a custom ankle movement trainer. A total of 15 elderly individuals participated in test-retest reliability measurements of bi-axial ankle stiffness at exactly one-week intervals for validation of the angular displacement in the device. The ankle's range of motion was also compared, along with its stiffness. The kinematic measurements significantly corresponded to results from a marker-based motion capture system (dorsi-/plantar flexion: r = 0.996; inversion/eversion: r = 0.985). Bi-axial ankle stiffness measurements showed significant intra-class correlations (ICCs) between the two visits for all ankle movements at slower (2.14°/s, ICC = 0.712) and faster (9.77°/s, ICC = 0.879) speeds. Stiffness measurements along the talocrural joint were thus shown to have significant negative correlation with active ankle range of motion (r = -0.631, p = 0.012). The ankle movement trainer, based on anatomical characteristics, was thus used to demonstrate valid and reliable bi-axial ankle stiffness measurements for movements along the talocrural and subtalar joint axes. Reliable measurements of ankle stiffness may help clinicians and researchers when designing and fabricating ankle-foot orthosis for people with upper-motor neuron disorders, such as stroke.KimHogeneH0000-0001-9624-6096Department of Clinical Rehabilitation Research, National Rehabilitation Center, Seoul 01022, Korea.ChoSangwooSTranslational Research Center on Rehabilitation Robots, National Rehabilitation Center, Seoul 01022, Korea.LeeHwiyoungHTranslational Research Center on Rehabilitation Robots, National Rehabilitation Center, Seoul 01022, Korea.eng#NRCTR-IN15002,16003Translational Research Center for Rehabilitation RobotsJournal Article20210207
SwitzerlandSensors (Basel)1012043661424-8220IMAgedAnkleAnkle JointBiomechanical PhenomenaHumansRange of Motion, ArticularReproducibility of ResultsSubtalar Jointankle stiffnessrange of motionrecliabilitysubtalartalocruralThe author(s) declare no potential conflict of interest.
20211122021129202122202121011202121160202142860202127epublish33562234PMC791467710.3390/s21041162s21041162Jezernik S., Colombo G., Keller T., Frueh H., Morari M. Robotic orthosis lokomat: A rehabilitation and research tool. Neuromodul. Technol. Neural Interface. 2003;6:108–115. doi: 10.1046/j.1525-1403.2003.03017.x.10.1046/j.1525-1403.2003.03017.x22150969Chaparro-Rico B.D., Cafolla D., Tortola P., Galardi G. Assessing Stiffness, Joint Torque and ROM for Paretic and Non-Paretic Lower Limbs during the Subacute Phase of Stroke Using Lokomat Tools. Appl. Sci. 2020;10:6168. doi: 10.3390/app10186168.10.3390/app10186168Schmartz A.C., Meyer-Heim A.D., Müller R., Bolliger M. Measurement of muscle stiffness using robotic assisted gait orthosis in children with cerebral palsy: A proof of concept. Disabil. Rehabil. Assist. Technol. 2011;6:29–37. doi: 10.3109/17483107.2010.509884.10.3109/17483107.2010.50988420690863Farjadian A.B., Nabian M., Holden M.K., Mavroidis C. Development of 2-DOF ankle rehabilitation system; Proceedings of the IEEE Annual Northeast Bioengineering Conference, NEBEC; Boston, MA, USA. 25–27 April 2014.Peng Q., Park H.-S., Shah P., Wilson N., Ren Y., Wu Y.-N., Liu J., Gaebler-Spira D.J., Zhang L.-Q. Quantitative evaluations of ankle spasticity and stiffness in neurological disorders using manual spasticity evaluator. J. Rehabil. Res. Dev. 2011;48:473. doi: 10.1682/JRRD.2010.04.0053.10.1682/JRRD.2010.04.0053PMC370180221674395Forrester L.W., Roy A., Goodman R.N., Rietschel J., Barton J.E., Krebs H.I., Macko R.F. Clinical application of a modular ankle robot for stroke rehabilitation. NeuroRehabilitation. 2013;33:85–97. doi: 10.3233/NRE-130931.10.3233/NRE-130931PMC461767723949045Goodman R.N., Rietschel J.C., Roy A., Jung B.C., Diaz J., Macko R.F., Forrester L.W. Increased reward in ankle robotics training enhances motor control and cortical efficiency in stroke. J. Rehabil. Res. Dev. 2014;51:213–227. doi: 10.1682/JRRD.2013.02.0050.10.1682/JRRD.2013.02.005024933720Deutsch J.E., Latonio J., Burdea G.C., Boian R. Post-Stroke Rehabilitation with the Rutgers Ankle System: A Case Study. Presence Teleoper. Virtual Environ. 2001;10:416–430. doi: 10.1162/1054746011470262.10.1162/1054746011470262Manter J.T. Movement of the subtalar and transverse tarsal joints. Anat. Rec. 1941;80:397–410. doi: 10.1002/ar.1090800402.10.1002/ar.1090800402Sarrafian S.K. Biomechanics of the subtalar joint complex. Clin. Orthop. Relat. Res. 1993;209:17–26. doi: 10.1097/00003086-199305000-00003.10.1097/00003086-199305000-000038472445Stagni R., Leardini A., O’Connor J.J., Giannini S. Role of passive structures in the mobility and stability of the human subtalar joint: A literature review. Foot Ankle Int. 2003;24:402–409. doi: 10.1177/107110070302400505.10.1177/10711007030240050512801196Wu G., Siegler S., Allard P., Kirtley C., Leardini A., Rosenbaum D., Whittle M., D’Lima D., Cristofolini L., Witte H. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: Ankle, hip, and spine. J. Biomech. 2002;35:543–548. doi: 10.1016/S0021-9290(01)00222-6.10.1016/S0021-9290(01)00222-611934426Hertel J. Functional Anatomy, Pathomechanics, and Pathophysiology of Lateral Ankle Instability. J. Athl. Train. 2002;37:364–375.PMC16436712937557Ashton-Miller J.A., Ottaviani R.A., Hutchinson C., Wojtys E.M. What best protects the inverted weightbearing ankle against further inversion? Evertor muscle strength compares favorably with shoe height, athletic tape, and three orthoses. Am. J. Sports Med. 1996;24:800–809. doi: 10.1177/036354659602400616.10.1177/0363546596024006168947403Kim H., Cho S., Lee H. Effects of passive Bi-axial ankle stretching while walking on uneven terrains in older adults with chronic stroke. J. Biomech. 2019;89:57–64. doi: 10.1016/j.jbiomech.2019.04.014.10.1016/j.jbiomech.2019.04.01431060809Zhang H., Nussbaum M.A., Agnew M.J. A new method to assess passive and active ankle stiffness during quiet upright stance. J. Electromyogr. Kinesiol. 2015;25:937–943. doi: 10.1016/j.jelekin.2015.10.011.10.1016/j.jelekin.2015.10.01126547842Kadaba M.P., Ramakrishnan H.K., Wootten M.E. Measurement of lower extremity kinematics during level walking. J. Orthop. Res. 1990;8:383–392. doi: 10.1002/jor.1100080310.10.1002/jor.11000803102324857Shrout P.E., Fleiss J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979;86:420–428. doi: 10.1037/0033-2909.86.2.420.10.1037/0033-2909.86.2.42018839484Bland J.M., Altman D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–310. doi: 10.1016/S0140-6736(86)90837-8.10.1016/S0140-6736(86)90837-82868172Farjadian A.B., Suri S., Bugliari A., Doucot P., Lavins N., Mazzotta A., Valenzuela J.P., Murphy P., Kong Q., Holden M.K., et al. Vi-RABT: Virtually interfaced robotic ankle and balance trainer; Proceedings of the IEEE International Conference on Robotics and Automation; Hong Kong, China. 31 May–7 June 2014; pp. 228–233.Roy A., Krebs H.I., Bever C.T., Forrester L.W., Macko R.F., Hogan N. Measurement of passive ankle stiffness in subjects with chronic hemiparesis using a novel ankle robot. J. Neurophysiol. 2011;105:2132–2149. doi: 10.1152/jn.01014.2010.10.1152/jn.01014.2010PMC329520521346215DeVita P., Hortobagyi T. Age increases the skeletal versus muscular component of lower extremity stiffness during stepping down. J. Gerontol. A Biol. Sci. Med. Sci. 2000;55:B593–B600. doi: 10.1093/gerona/55.12.B593.10.1093/gerona/55.12.B59311129389Chesworth B.M., Vandervoort A.A. Age and passive ankle stiffness in healthy women. Phys. Ther. 1989;69:217–224. doi: 10.1093/ptj/69.3.217.10.1093/ptj/69.3.2172919193Gajdosik R.L., Vander Linden D.W., McNair P.J., Riggin T.J., Albertson J.S., Mattick D.J., Wegley J.C. Slow passive stretch and release characteristics of the calf muscles of older women with limited dorsiflexion range of motion. Clin. Biomech. 2004;19:398–406. doi: 10.1016/j.clinbiomech.2003.12.009.10.1016/j.clinbiomech.2003.12.00915109761Chung S.G., Van Rey E.M., Bai Z., Rogers M.W., Roth E.J., Zhang L.Q. Aging-related neuromuscular changes characterized by tendon reflex system properties. Arch. Phys. Med. Rehabil. 2005;86:318–327. doi: 10.1016/j.apmr.2004.04.048.10.1016/j.apmr.2004.04.04815706561Bowditch M.G., Sanderson P., Livesey J.P. The significance of an absent ankle reflex. J. Bone Jt. Surg. Br. 1996;78:276–279. doi: 10.1302/0301-620X.78B2.0780276.10.1302/0301-620X.78B2.07802768666641Mizuno S., Sonoda S., Takeda K., Maeshima S. Measurement of Resistive Plantar Flexion Torque of the Ankle during Passive Stretch in Healthy Subjects and Patients with Poststroke Hemiplegia. J. Stroke Cerebrovasc. Dis. 2016;25:946–953. doi: 10.1016/j.jstrokecerebrovasdis.2015.12.036.10.1016/j.jstrokecerebrovasdis.2015.12.03626851973Lin P.Y., Yang Y.R., Cheng S.J., Wang R.Y. The relation between ankle impairments and gait velocity and symmetry in people with stroke. Arch. Phys. Med. Rehabil. 2006;87:562–568. doi: 10.1016/j.apmr.2005.12.042.10.1016/j.apmr.2005.12.04216571398Potter J.M., Evans A.L., Duncan G. Gait speed and activities of daily living function in geriatric patients. Arch. Phys. Med. Rehabil. 1995;76:997–999. doi: 10.1016/S0003-9993(95)81036-6.10.1016/S0003-9993(95)81036-67487453Burridge J.H., Taylor P.N., Hagan S.A., Wood D.E., Swain I.D. The effects of common peroneal stimulation on the effort and speed of walking: A randomized controlled trial with chronic hemiplegic patients. Clin. Rehabil. 1997;11:201–210. doi: 10.1177/026921559701100303.10.1177/0269215597011003039360032Alam M., Choudhury I.A., Bin Mamat A. Mechanism and design analysis of articulated ankle foot orthoses for drop-foot. Sci. World J. 2014;2014:867869. doi: 10.1155/2014/867869.10.1155/2014/867869PMC403266924892102Vandervoort A.A., Chesworth B.M., Cunningham D.A., Paterson D.H., Rechnitzer P.A., Koval J.J. Age and Sex Effects on Mobility of the Human Ankle. J. Gerontol. 1992;47:M17–M21. doi: 10.1093/geronj/47.1.M17.10.1093/geronj/47.1.M171730848Clarkson H.M. Musculoskeletal Assessment: Joint Range of Motion and Manual Muscle Strength. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2000.