A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimization of Ni-Co-Fe-Based Catalysts for Oxygen Evolution Reaction by Surface and Relaxation Phenomena Analysis. | LitMetric

Trimetallic double hydroxide NiFeCo-OH is prepared by coprecipitation, from which three different catalysts are fabricated by different heat treatments, all at 350 °C maximum temperature. Among the prepared catalysts, the one prepared at a heating and cooling rate of 2 °C min in N atmosphere (designated NiFeCo-N -2 °C) displays the best catalytic properties after stability testing, exhibiting a high current density (9.06 mA cm at 320 mV), low Tafel slope (72.9 mV dec ), good stability (over 20 h), high turnover frequency (0.304 s ), and high mass activity (46.52 A g at 320 mV). Stability tests reveal that the hydroxide phase is less suitable for long-term use than catalysts with an oxide phase. Two causes are identified for the loss of stability in the hydroxide phase: a) Modeling of the distribution function of relaxation times (DFRT) reveals the increase in resistance contributed by various relaxation processes; b) density functional theory (DFT) surface energy calculations reveal that the higher surface energy of the hydroxide-phase catalyst impairs the stability. These findings represent a new strategy to optimize catalysts for water splitting.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202002946DOI Listing

Publication Analysis

Top Keywords

hydroxide phase
8
surface energy
8
catalysts
5
stability
5
optimization ni-co-fe-based
4
ni-co-fe-based catalysts
4
catalysts oxygen
4
oxygen evolution
4
evolution reaction
4
reaction surface
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!