AI Article Synopsis

  • Mutations in the MYBPC3 gene in cats are linked to hypertrophic cardiomyopathy (HCM), but how these mutations cause the disease is not yet understood.
  • Researchers created a fruit fly model with MYBPC3 mutations similar to those found in feline HCM to investigate the underlying mechanisms.
  • The study found that mutant alleles caused significant changes in gene expression, including downregulation of small nucleolar RNAs and impacts on cellular responses, suggesting that these mutations affect various biological processes relevant to HCM in both cats and possibly humans.

Article Abstract

In cats, mutations in myosin binding protein C (encoded by the MYBPC3 gene) have been associated with hypertrophic cardiomyopathy (HCM). However, the molecular mechanisms linking these mutations to HCM remain unknown. Here, we establish Drosophila melanogaster as a model to understand this connection by generating flies harboring MYBPC3 missense mutations (A31P and R820W) associated with feline HCM. The A31P and R820W flies displayed cardiovascular defects in their heart rates and exercise endurance. We used RNA-seq to determine which processes are misregulated in the presence of mutant MYBPC3 alleles. Transcriptome analysis revealed significant downregulation of genes encoding small nucleolar RNA (snoRNAs) in exercised female flies harboring the mutant alleles compared to flies that harbor the wild-type allele. Other processes that were affected included the unfolded protein response and immune/defense responses. These data show that mutant MYBPC3 proteins have widespread effects on the transcriptome of co-regulated genes. Transcriptionally differentially expressed genes are also candidate genes for future evaluation as genetic modifiers of HCM as well as candidate genes for genotype by exercise environment interaction effects on the manifestation of HCM; in cats as well as humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7849908PMC
http://dx.doi.org/10.1093/g3journal/jkaa014DOI Listing

Publication Analysis

Top Keywords

small nucleolar
8
hypertrophic cardiomyopathy
8
flies harboring
8
a31p r820w
8
mutant mybpc3
8
candidate genes
8
hcm
5
genes
5
heat shock
4
shock proteins
4

Similar Publications

Specific modulation of 28S_Um2402 rRNA 2'--ribose methylation as a novel epitranscriptomic marker of ZEB1-induced epithelial-mesenchymal transition in different mammary cell contexts.

NAR Cancer

March 2025

Ribosome, Translation and Cancer Team, LaEx DEVweCAN, Institut Convergence Plascan, LYriCAN+, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France.

The epithelial-mesenchymal transition (EMT) is a dynamic transdifferentiation of epithelial cells into mesenchymal cells. EMT programs exhibit great diversity, based primarily on the distinct impact of molecular activities of the EMT transcription factors. Using a panel of cancer cell lines and a series of 71 triple-negative primary breast tumors, we report that the EMT transcription factor ZEB1 modulates site-specific chemical modifications of ribosomal RNA (rRNA).

View Article and Find Full Text PDF

Small Nucleolar RNAs and the Brain: Growing Evidence Supporting Their Role in Psychiatric Disorders.

Biol Psychiatry Glob Open Sci

March 2025

McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada.

Noncoding RNAs comprise most of the transcriptome and represent an emerging area of research. Among them, small nucleolar RNAs (snoRNAs) have emerged as a promising target because they have been associated with the development and evolution of several diseases, including psychiatric disorders. snoRNAs are expressed in the brain, with some showing brain-specific expression that indicates specific roles in brain development, function, and dysfunction.

View Article and Find Full Text PDF

Objective: To investigate the effects of LncRNA SNHG20 on epithelial mesenchymal transition (EMT) and microtubule formation in human oral squamous cell carcinoma (OSCC) cells through targeted regulation of the miR-520c-3p/ pathway.

Methods: After real-time fluorescence quantitative detection of LncRNA SNHG20, miR-520c-3p, mRNA expression levels in OSCC tissues and cells, dual luciferase reporter assay was used to detect the relationship between the three. OSCC cells were randomly separated into control group, sh-NC group, sh-SNHG20 group, sh-SNHG20+anti NC group, and sh-SNHG20+anti miR-520c-3p group.

View Article and Find Full Text PDF

A guide to the biogenesis and functions of endogenous small non-coding RNAs in animals.

Nat Rev Mol Cell Biol

January 2025

RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.

Small non-coding RNAs can be categorized into two main classes: structural RNAs and regulatory RNAs. Structural RNAs, which are abundant and ubiquitously expressed, have essential roles in the maturation of pre-mRNAs, modification of rRNAs and the translation of coding transcripts. By contrast, regulatory RNAs are often expressed in a developmental-specific, tissue-specific or cell-type-specific manner and exert precise control over gene expression.

View Article and Find Full Text PDF

Background: The impact of Prader-Willi syndrome (PWS) domain gene expression on the growth of healthy children is not well understood. This study investigated associations between PWS domain gene expression in umbilical cord tissue and prenatal and postnatal growth, considering potential sex differences.

Methods: Relative gene expression of paternally expressed MAGEL2, NDN, and SNURF-SNRPN, and the small nucleolar RNAs SNORD116 and SNORD115 were determined by real-time quantitative polymerase chain reaction in umbilical cord tissue from 122 healthy newborns (59 girls and 63 boys).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!