Valorization of khat (Catha edulis) waste for the production of cellulose fibers and nanocrystals.

PLoS One

Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.

Published: August 2021

Cellulose fibers (C40 and C80) were extracted from khat (Catha edulis) waste (KW) with chlorine-free process using 40% formic acid/40% acetic acid (C40), and 80% formic acid/80% acetic acid (C80) at the pretreatment stage, followed by further delignification and bleaching stages. Cellulose nanocrystals (CNCs40 and CNCs80) were then isolated from C40 and C80 with sulfuric acid hydrolysis, respectively. Thus, the current study aims to isolate cellulose fibers and CNCs from KW as alternative source. The KW, cellulose fibers, and CNCs were investigated for yield, chemical composition, functionality, crystallinity, morphology, and thermal stability. CNCs were also evaluated for colloidal stability, particle size, and their influence on in vitro diclofenac sodium release from gel formulations preliminarily. The FTIR spectra analysis showed the removal of most hemicellulose and lignin from the cellulose fibers. The XRD results indicated that chemical pretreatments and acid hydrolysis significantly increased the crystallinity of cellulose fibers and CNCs. The cellulose fibers and CNCs exhibited Cellulose Iβ crystalline lattice. TEM analysis revealed formation of needle-shaped nanoscale rods (length: 101.55-162.96 nm; aspect ratio: 12.84-22.73). The hydrodynamic size, polydispersity index, and zeta potential of the CNCS ranged from 222.8-362.8 nm; 0.297-0.461, and -45.7 to -75.3 mV, respectively. CNCs40 exhibited superior properties to CNCs80 in terms of aspect ratio, and colloidal and thermal stability. Gel formulations containing high proportion of CNCs sustained diclofenac sodium release (< 50%/cm2) over 12 h. This study suggests that cellulose fibers and nanocrystals can be successfully obtained from abundant and unexploited source, KW for value-added industrial applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7872298PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246794PLOS

Publication Analysis

Top Keywords

cellulose fibers
32
fibers cncs
16
cellulose
10
khat catha
8
catha edulis
8
edulis waste
8
fibers
8
fibers nanocrystals
8
c40 c80
8
acetic acid
8

Similar Publications

Matrix vesicle-inspired delivery system based on nanofibrous chitosan microspheres for enhanced bone regeneration.

Mater Today Bio

February 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.

Inspired by the initial mineralization process with bone matrix vesicles (MVs), this study innovatively developed a delivery system to mediate mineralization during bone regeneration. The system comprises nanofibrous chitosan microspheres (NCM) and poly (allylamine hydrochloride)-stabilized amorphous calcium phosphate (PAH-ACP), which is thereafter referred to as NCMP. NCM is synthesized through the thermal induction of chitosan molecular chains, serving as the carrier, while PAH-ACP functions as the mineralization precursor.

View Article and Find Full Text PDF

Stay-green sorghum varieties are known for their drought resistance and ability to retain green biomass during grain filling, making them crucial for sustainable agriculture in arid regions. However, there is limited information on their stover yield (SY) and nutritional quality when both grain and forage are harvested. This study assessed five stay-green sorghum varieties at the Bako Agricultural Research Centre using a randomized complete block design with three replications in 2020, 2021, and 2022.

View Article and Find Full Text PDF

The applicability of cellulose and its derivatives is greatly depends on their attributes such as aspect ratio, morphology, surface chemistry, crystallinity, as well as their thermal and mechanical properties. However, these attributes can alter according to the utilized raw material, size classifications, extraction techniques, or fibrillation methods. Among these, the effect of raw material particle size on cellulose properties has received limited attention in scientific studies.

View Article and Find Full Text PDF

A multifunctional hydrogel with outstanding mechanical properties and excellent ionic conductivity holds immense potential for applications in various fields, such as healthcare monitoring, and various devices, such as wearable devices and flexible electronics. However, developing hydrogels that combine high mechanical strength with efficient electrical conductivity remains a considerable challenge. Herein, an ion-conductive hydrogel with excellent mechanical properties and ionic conductivity is successfully created.

View Article and Find Full Text PDF

Super-strong hydrogel reinforced by an interconnected hollow microfiber network via regulating the water-cellulose-copolymer interplay.

Sci Bull (Beijing)

January 2025

Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China. Electronic address:

The discontinuous fiber reinforced hydrogels are easy to fail due to the fracture of the fiber matrix during load-bearing. Here, we propose a novel strategy based on the synergistic reinforcement of interconnected natural fiber networks at multiple scales to fabricate hydrogels with extraordinary mechanical properties. Specifically, the P(AA-AM)/Cel (P(AA-AM), poly(acrylic acid-acrylamide); Cel, cellulose) hydrogel is synthesized by copolymerizing AA and AM on a substrate of paper with an interconnected hollow cellulose microfiber network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!