A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Protocol of the STRess at Work (STRAW) Project: How to Disentangle Day-to-Day Occupational Stress among Academics Based on EMA, Physiological Data, and Smartphone Sensor and Usage Data. | LitMetric

Several studies have reported on increasing psychosocial stress in academia due to work environment risk factors like job insecurity, work-family conflict, research grant applications, and high workload. The STRAW project adds novel aspects to occupational stress research among academic staff by measuring day-to-day stress in their real-world work environments over 15 working days. Work environment risk factors, stress outcomes, health-related behaviors, and work activities were measured repeatedly via an ecological momentary assessment (EMA), specially developed for this project. These results were combined with continuously tracked physiological stress responses using wearable devices and smartphone sensor and usage data. These data provide information on workplace context using our self-developed Android smartphone app. The data were analyzed using two approaches: 1) multilevel statistical modelling for repeated data to analyze relations between work environment risk factors and stress outcomes on a within- and between-person level, based on EMA results and a baseline screening, and 2) machine-learning focusing on building prediction models to develop and evaluate acute stress detection models, based on physiological data and smartphone sensor and usage data. Linking these data collection and analysis approaches enabled us to disentangle and model sources, outcomes, and contexts of occupational stress in academia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7730921PMC
http://dx.doi.org/10.3390/ijerph17238835DOI Listing

Publication Analysis

Top Keywords

occupational stress
12
smartphone sensor
12
sensor usage
12
usage data
12
work environment
12
environment risk
12
risk factors
12
stress
9
data
9
straw project
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!