Myofibroblasts are the major cellular source of collagen, and their accumulation - via differentiation from fibroblasts and resistance to apoptosis - is a hallmark of tissue fibrosis. Clearance of myofibroblasts by dedifferentiation and restoration of apoptosis sensitivity has the potential to reverse fibrosis. Prostaglandin E2 (PGE2) and mitogens such as FGF2 have each been shown to dedifferentiate myofibroblasts, but - to our knowledge - the resultant cellular phenotypes have neither been comprehensively characterized or compared. Here, we show that PGE2 elicited dedifferentiation of human lung myofibroblasts via cAMP/PKA, while FGF2 utilized MEK/ERK. The 2 mediators yielded transitional cells with distinct transcriptomes, with FGF2 promoting but PGE2 inhibiting proliferation and survival. The gene expression pattern in fibroblasts isolated from the lungs of mice undergoing resolution of experimental fibrosis resembled that of myofibroblasts treated with PGE2 in vitro. We conclude that myofibroblast dedifferentiation can proceed via distinct programs exemplified by treatment with PGE2 and FGF2, with dedifferentiation occurring in vivo most closely resembling the former.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8026183PMC
http://dx.doi.org/10.1172/jci.insight.144799DOI Listing

Publication Analysis

Top Keywords

myofibroblast dedifferentiation
8
myofibroblasts
5
pge2
5
dedifferentiation proceeds
4
proceeds distinct
4
distinct transcriptomic
4
transcriptomic phenotypic
4
phenotypic transitions
4
transitions myofibroblasts
4
myofibroblasts major
4

Similar Publications

VEGFA administration has been explored as a pro-angiogenic therapy for cardiovascular diseases including heart failure for several years, but with little success. Here, we investigate a different approach to augment VEGFA bioavailability: by deleting the VEGFA decoy receptor VEGFR1 (also known as FLT1), one can achieve more physiological VEGFA concentrations. We find that after cryoinjury, zebrafish flt1 mutant hearts display enhanced coronary revascularization and endocardial expansion, increased cardiomyocyte dedifferentiation and proliferation, and decreased scarring.

View Article and Find Full Text PDF

Inflammatory myofibroblastic tumor and liposarcoma very rarely present as tumors of the chest wall. Never have both been reported together in the same lesion. We present a case wherein a 72-year-old man with a rapidly progressing lesion initially mistaken for a local infection underwent resection with diagnosis of inflammatory myofibroblastic tumor.

View Article and Find Full Text PDF
Article Synopsis
  • Fibrosis, especially idiopathic pulmonary fibrosis (IPF), is linked to abnormal healing processes in the lungs that can lead to organ failure, with no current cure.
  • The study investigates activated myofibroblasts (aMYFs), their different subtypes, and their roles in lung repair and damage using genetic and transcriptomic analysis in mice, as well as human data.
  • Findings reveal that aMYFs can be categorized into four distinct groups, with a specific subset linked to both the progression and resolution of fibrosis, suggesting new potential treatment targets for managing IPF.
View Article and Find Full Text PDF

Dermal white adipose tissue: Development and impact on hair follicles, skin defense, and fibrosis.

FASEB J

September 2024

Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China.

Dermal white adipose tissue (DWAT) is a distinctive adipose depot located within the lower dermis of the skin. Its significance as an ancillary fat in skin homoeostasis has recently received increased attention. New research has revealed that DWAT responses to skin pathology and physiology changes, impacting skin development, hair cycling, defense mechanisms, and fibrotic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!