Among tracking techniques applied in the 3-D freehand ultrasound (US), the camera-based tracking method is relatively mature and reliable. However, constrained by manufactured marker rigid bodies, the US probe is usually limited to operate within a narrow rotational range before occlusion issues affect accurate and robust tracking performance. Thus, this study proposed a hemispherical marker rigid body to hold passive noncoplanar markers so that the markers could be identified by the camera, mitigating self-occlusion. The enlarged rotational range provides greater freedom for sonographers while performing examinations. The single-axis rotational and translational tracking performances of the system, equipped with the newly designed marker rigid body, were investigated and evaluated. Tracking with the designed marker rigid body achieved high tracking accuracy with 0.57° for the single-axis rotation and 0.01 mm for the single-axis translation for sensor distance between 1.5 and 2 m. In addition to maintaining high accuracy, the system also possessed an enhanced ability to capture over 99.76% of the motion data in the experiments. The results demonstrated that with the designed marker rigid body, the missing data were remarkably reduced from over 15% to less than 0.5%, which enables interpolation in the data postprocessing. An imaging test was further conducted, and the volume reconstruction of a four-month fetal phantom was demonstrated using the motion data obtained from the tracking system.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2021.3058145DOI Listing

Publication Analysis

Top Keywords

marker rigid
24
rigid body
20
designed marker
12
tracking
8
hemispherical marker
8
rotational range
8
motion data
8
marker
6
rigid
6
body
5

Similar Publications

Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.

View Article and Find Full Text PDF

Transdiagnostic conceptualization of schizophrenia and autism spectrum disorder. An integrative framework of minimal self disturbance.

Neuropsychopharmacol Hung

December 2024

Pszichiátriai és Pszichoterápiás Klinika, Semmelweis Egyetem, Budapest.

Article Synopsis
  • The study suggests that autism spectrum disorder and schizophrenia may share overlapping features, particularly regarding minimal self-experience, characterized by altered body ownership and agency.
  • A literature review highlighted tools used to assess self-experience in both disorders, revealing that minimal self-disturbances are significant in both, though they manifest differently.
  • The findings indicate that these disorders might be part of a shared psychopathological continuum, with common neural mechanisms contributing to self-disturbances across the conditions.
View Article and Find Full Text PDF

Sensing-based deep brain stimulation should optimally consider both the motor and neuropsychiatric domain to maximize quality of life of Parkinson's disease (PD) patients. Here we characterize the neurophysiological properties of the subthalamic nucleus (STN) in 69 PD patients using a newly established neurophysiological gradient metric and contextualize it with motor symptoms and apathy. We could evidence a STN power gradient that holds most of the spectral information between 5 and 30 Hz spanning along the dorsal-ventral axis.

View Article and Find Full Text PDF

Advancements in cryo-EM have stimulated a revolution in structural biology. Yet, for membrane proteins near the cryo-EM size threshold of approximately 40 kDa, including transporters and G-protein coupled receptors, the absence of distinguishable structural features makes image alignment and structure determination a significant challenge. Furthermore, resolving more than one protein conformation within a sample, a major advantage of cryo-EM, represents an even greater degree of difficulty.

View Article and Find Full Text PDF

Objective: Corpus callosum (CC) damage is the most consistent and typical change in early Parkinson's disease (PD), and is associated with various PD symptoms. However, the precise relationship between CC subregions and specific PD symptoms have not been identified comprehensively. In this study, we investigated the association between specific CC subregion alterations and PD symptoms using diffusion-weighted imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!