Pompe disease is an inherited disorder caused by disease-associated variants in the acid α-glucosidase gene (GAA). The Pompe disease GAA variant database (http://www.pompevariantdatabase.nl) is a curated, open-source, disease-specific database, and lists disease-associated GAA variants, in silico predictions, and clinical phenotypes reported until 2016. Here, we provide an update to include 226 disease-associated variants that were published until 2020. We also listed 148 common GAA sequence variants that do not cause Pompe disease. GAA variants with unknown severity that were identified only in newborn screening programs were listed as a new feature to indicate the reason why phenotypes were still unknown. Expression studies were performed for common missense variants to predict their severity. The updated Pompe disease GAA variant database now includes 648 disease-associated variants, 26 variants from newborn screening, and 237 variants with unknown severity. Regular updates of the Pompe disease GAA variant database will be required to improve genetic counseling and the study of genotype-phenotype relationships.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7898817PMC
http://dx.doi.org/10.1002/humu.24148DOI Listing

Publication Analysis

Top Keywords

pompe disease
20
variant database
16
disease-associated variants
16
disease gaa
16
newborn screening
12
gaa variant
12
variants
11
clinical phenotypes
8
sequence variants
8
variants newborn
8

Similar Publications

Absence of functional acid-α-glucosidase (GAA) leads to early-onset Pompe disease with cardiorespiratory and neuromuscular failure. A novel Pompe rat model ( ) was used to test the hypothesis that neonatal gene therapy with adeno-associated virus serotype 9 (AAV9) restores cardiorespiratory neuromuscular function across the lifespan. Temporal vein administration of AAV9-DES-GAA or sham (saline) injection was done on post-natal day 1; rats were studied at 6-12 months old.

View Article and Find Full Text PDF

Late-onset Pompe disease (LOPD) is a rare, autosomal recessive metabolic disorder that is heterogeneous in disease presentation and progression. People with LOPD report a significantly lower physical, psychological, and social quality of life (QoL) than the general population. This study investigated how individuals' self-reported LOPD status (improving, stable, declining) relates to their QoL.

View Article and Find Full Text PDF

Background: Pompe disease is a glycogen storage disease primarily affecting striated muscles. Despite its main manifestation in muscles, patients with Pompe disease may exhibit non-muscle symptoms, such as hearing loss, suggesting potential involvement of sensory organs or the nervous system due to glycogen accumulation.

Aims: This study aimed to evaluate the presence of concomitant small and large fiber neuropathy in patients with Pompe disease.

View Article and Find Full Text PDF

Advances in Disease-Modifying Therapeutics for Chronic Neuromuscular Disorders.

Semin Respir Crit Care Med

December 2024

Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio.

Neuromuscular disorders can cause respiratory impairment by affecting the muscle fibers, neuromuscular junction, or innervation of respiratory muscles, leading to significant morbidity and mortality. Over the past few years, new disease-modifying therapies have been developed and made available for treating different neuromuscular disorders. Some of these therapies have remarkable effectiveness, resulting in the prevention and reduction of respiratory complications.

View Article and Find Full Text PDF

For years, the treatment of many cardiomyopathies has been solely focused on symptom management. However, cardiomyopathies have a genetic substrate, and directing therapy towards the pathophysiology rather than the epiphenomenon of the disease may be a winning strategy. Gene therapy involves the insertion of genes or the modification of existing ones and their regulatory elements through strategies like gene replacement and gene editing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!