Constitutive activation of NF-κB during early bone marrow development results in loss of B cells at the pro-B-cell stage.

Blood Adv

Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.

Published: February 2021

There is a considerable body of work exploring the role of NF-κB family of transcription factors in the maturation and functions of later stage B cells; however, their role in the earlier bone marrow stages of development is less well understood despite the demonstration that NF-κB activity is present at all early stages of B-cell development. To explore the consequences of early, B cell-targeted constitutive activation of both NF-κB pathways on B-cell development, we generated mice that have either or both. NF-κB pathways constitutively activated beginning in early pro-B cells. In marked contrast to activating a single pathway, we found mice with both pathways constitutively activated displayed a profound loss of B cells, starting with early pro-B cells and peaking at the late pro-B-cell stage, at least in part as a result of increased apoptosis. This effect was found to be cell autonomous and to have striking phenotypic consequences on the secondary lymphoid organs and circulating antibody levels. This effect was also found to be temporal in nature as similar activation under a Cre expressed later in development did not result in generation of a similar phenotype. Taken together, these findings help to shed further light on the need for tight regulation of the NF-κB family of transcription factors during the various stages of B-cell development in the bone marrow.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7876872PMC
http://dx.doi.org/10.1182/bloodadvances.2020002932DOI Listing

Publication Analysis

Top Keywords

bone marrow
12
b-cell development
12
constitutive activation
8
activation nf-κb
8
loss cells
8
pro-b-cell stage
8
nf-κb family
8
family transcription
8
transcription factors
8
stages b-cell
8

Similar Publications

An incomplete discoid lateral meniscus is often associated with radial tears, which cause meniscal extrusion and result in poor healing outcomes. Centralization has recently been used as a surgical method to reduce extrusion. However, various repair techniques use single point of fixation sutures exclusively on the femoral side, potentially hindering healing.

View Article and Find Full Text PDF

Osteonecrosis of the femoral head can lead to end-stage osteoarthritis when left untreated. The incidence has been on the rise since the onset of the COVID-19 pandemic. Core decompression of the femoral head is usually the first line of surgical treatment when conservative options fail.

View Article and Find Full Text PDF

Osseointegration-Related Exosomes for Surface Functionalization of Titanium Implants.

Biomater Res

December 2024

Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.

Despite that the clinical application of titanium-based implants has achieved great success, patients' own diseases and/or unhealthy lifestyle habits often lead to implant failure. Many studies have been carried out to modify titanium implants to promote osseointegration and implant success. Recent studies showed that exosomes, proactively secreted extracellular vesicles by mammalian cells, could selectively target and modulate the functions of recipient cells such as macrophages, nerve cells, endothelial cells, and bone marrow mesenchymal stem cells that are closely involved in implant osseointegration.

View Article and Find Full Text PDF

Background: Diabetic pain patients have increased pain at night. Exosomes can relieve neuropathic pain. This study aimed to investigate the efficacy of exosome administration at different time points in relieving diabetic neuropathic pain (DNP) in rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!