Purpose: To investigate the protein profile of bovine amniotic membranes (bAM) and to determine putative associations between protein composition in bAM and known corneal healing pathways.
Methods: The bAM were acquired from normal full-term births (n = 10), processed, and stored at -80°C for two days. Subsequently, the frozen membranes were thawed at room temperature and prepared for proteomic exploration using high-resolution liquid chromatography-mass spectrometry, followed by bioinformatics analysis. Recently identified corneal healing pathways were contrasted with protein profiles and pathways present in bAM.
Results: The analyses identified 2105 proteins, with an interactive network of 1271 nodes (proteins) and 8757 edges (interactions). The proteins with higher betweenness centrality measurements include microfibril-associated protein 4, HSD3B1, CAPNS1, ATP1B3, CAV1, ANXA2, YARS, and GAPDH. The top four pathways in Kyoto Encyclopedia of Genes and Genomes were ribosome, metabolic pathway, spliceosome, and oxidative phosphorylation. The bAM and cornea shared abundant proteins, genome ontology, and signaling pathways.
Conclusions: The high-throughput proteomic profile of the bAM demonstrated that numerous proteins present in the cornea are also present in this fetal membrane. Our findings collectively demonstrate the similarity between bAM and the cornea's protein composition, supporting our hypothesis that bAM can be used to treat corneal diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7873491 | PMC |
http://dx.doi.org/10.1167/iovs.62.2.11 | DOI Listing |
Cureus
December 2024
Department of Ophthalmology, Hospital University Kebangsaan Malaysia, Kuala Lumpur, MYS.
We report a rare case of a missed intracavernous internal carotid artery dissecting aneurysm occurring as a complication of the base of skull fracture with severe brain injury causing acute cavernous sinus syndrome with permanent vision loss. A 31-year-old Myanmar lady had an alleged motor vehicle accident and suffered severe traumatic brain injury with multiple intracranial bleeds, multiple facial bone and base of skull fractures, and limb fractures. At one week post-trauma, she had severe right eye proptosis with vision loss, ophthalmoplegia, chemosis, and high intraocular pressure.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Purpose: Corneal alkali burns are severe ocular injuries characterized by intense inflammation, tissue damage, and vision impairment, with current treatments often insufficient in restoring corneal function and clarity. This study aimed to evaluate the therapeutic effects of recombinant thrombomodulin domain 1 (rTMD1) in the treatment of corneal alkali burns, focusing on its impact on inflammation, tissue repair, fibrosis, and neovascularization.
Methods: A murine model of corneal alkali burn was utilized to investigate the therapeutic potential of rTMD1.
Invest Ophthalmol Vis Sci
January 2025
State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
Purpose: Protein arginine methyltransferase 1 (PRMT1) is an integral constituent of numerous cellular processes. However, its role in corneal epithelial wound healing (CEWH) remains unclear. This study investigates the impact of PRMT1 on cellular mechanisms underlying corneal epithelial repair and its potential to improve wound healing outcomes.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China.
Zhonghua Yan Ke Za Zhi
January 2025
Department of Ophthalmology,Beijing Hospital, National Center of Gerontology Institute of Geriatric Medicine,Chinese Academy of Medical Sciences,Beijing100730,China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!